hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3843 Accepted Submission(s): 1336

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
1 1 20
//#define LOCAL
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
const int inf=0x3f3f3f3f;
struct node
{
int x,y,p;
double dist(const node &cc){
return sqrt((double)(x-cc.x)*(x-cc.x)+(y-cc.y)*(y-cc.y));
}
}sac[maxn]; bool vis[maxn];
bool road[maxn][maxn];
int pre[maxn];
double maxc[maxn][maxn];
double lowcost[maxn];
double map[maxn][maxn];
double res;
void prim(int st,int en){ memset(vis,,sizeof(vis));
memset(road,,sizeof(road));
memset(maxc,,sizeof maxc);
for(int i=;i<en;i++){
lowcost[i]=map[st][i];
pre[i]=st;;
}
vis[st]=;
res=;
for(int i=;i<en;i++)
{
double larger=inf;
int pp=-;
for(int j=;j<en;j++)
{
if(!vis[j]&&larger>lowcost[j])
{
larger=lowcost[j];
pp=j;
}
}
if(-==pp)continue;
road[pp][pre[pp]]=road[pre[pp]][pp]=;
res+=lowcost[pp];
vis[pp]=;
for(int i=;i<en;i++)
{ if(!vis[i]&&lowcost[i]>map[pp][i]){
lowcost[i]=map[pp][i];
pre[i]=pp;
}
//求解生成树的最大边
if(vis[i]&&i!=pp){
maxc[i][pp]=maxc[pp][i]=max(maxc[i][pre[pp]],lowcost[pp]);
}
}
}
return ;
} int main()
{
#ifdef LOCAL
freopen("test.in","r",stdin);
#endif
int tt,nn;
scanf("%d",&tt);
while(tt--){
scanf("%d",&nn);
// memset(map,0,sizeof(map));
for(int i=;i<nn;i++){
scanf("%d%d%d",&sac[i].x,&sac[i].y,&sac[i].p);
map[i][i]=;
for(int j=i-;j>=;--j){
map[i][j]=map[j][i]=sac[i].dist(sac[j]);
}
}
prim(,nn);
double ans=0.0;
for(int i=;i<nn;i++){
for(int j=;j<nn;j++){
if(i!=j)
{
double tol_p=sac[i].p+sac[j].p;
if(road[i][j])
ans=max(tol_p/(res-map[i][j]),ans);
else
ans=max(tol_p/(res-maxc[i][j]),ans);
}
}
}
printf("%.2lf\n",ans);
}
return ;
}
hdu 4081 Qin Shi Huang's National Road System (次小生成树)的更多相关文章
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...
- HDU 4081 Qin Shi Huang's National Road System [次小生成树]
题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...
- HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...
- HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形
题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...
- hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...
- hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...
- HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...
随机推荐
- AES加密算法-128位高安全,高速度
网上资料显示,下一代加密技术会围绕着AES技术进行.初出茅庐,学习编写了加密代码,如下所示 package com.bao.tools.encryption; import java.security ...
- CodeForces 384A Coder
Coder Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- 2012 #3 Arcane Numbers
Arcane Numbers 1 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Su ...
- LuaTinker的bug和缺陷
LuaTinker的bug和缺陷 LuaTinker是一套还不错的C++代码和Lua代码的绑定库,作者是韩国人Kwon-il Lee,作者应该是参考了LuaBind后,为了简化和避免过重而实现的.其官 ...
- jquery之each()、$.each()[jQuery.each()]
导航: 1,jQuery对象(实例)的each()函数 2,全局jQuery对象的each()函数 一:jQuery对象(实例)的each()函数 each()函数用于以当前jQuery对象匹配到的每 ...
- 面向对象--类库、委托、is和as运算符、泛型集合
类库: 其实就是一堆类文件,只是看不到这些类的源代码,保密性好. 优点:保密性好 缺点:如果这个方法不好用,使用者无法自己去更改它. 给的大多是dll文件.使用方法:引用右键,添加引用,浏览,选择到相 ...
- poj 2318 TOYS (二分+叉积)
http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 101 ...
- [置顶] 将项目从tomcat 迁移到JBoss
注:针对的是jboss5.0,其它版本没有测试过 ,主要参考了:http://www.diybl.com/course/3_program/java/javajs/20100719/460908.ht ...
- jdk和eclipse位数不一致出错
32位的eclipse无法打开:找不64位jdk6的jvm.dll文件(64位的没有这个文件).网上说法可以通过设置eclipse初始化文件xxx.ini改变方式: 直接换成了同位数的了,没去试了.
- 卷积FFT、NTT、FWT
先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. ...