模块的使用

引用模块的两种形式

  • 形式一: import module_name
  • 形式二: from module1 import module11   (module11是module的子模块)

例:引用精确除法模块

>>> 5/2
2
>>> from __future__ import division
>>> 5/2
2.5
>>> 5//2
2
>>>

如过需要进行开方,乘方,对数等运算就需要用到Python中的Math模块

>>> import math
>>> dir(math)    #查看该模块提供的功能
['__doc__', '__file__', '__name__', '__package__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'hypot', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']
>>> help(math.pow) #查看函数的使用方法
Help on built-in function pow in module math: pow(...)
pow(x, y) Return x**y (x to the power of y).
(END)

有时候引入的模块或者方法名称有点长,可以给它重命名。如:

from pprint import pprint as pt

Python 的模块,不仅可以看帮助信息和文档,还能够查看源码,因为它是开放的。

>>> print pprint.__file__
/usr/local/python2.7/lib/python2.7/pprint.pyc

在同级目录下就可以看到源码

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArAAAABUCAIAAAD1bJNcAAATi0lEQVR4nO2dzZ3jLAyHU8FWsOdcpoKpYC5cpxI3sG3QwtuEm9gWUse+B9sxAn0BdkIm/+e3h52YYCHJQnzEXC4cv//7/v53//f18cGWAq/A92diyu+vP7+eLRA4jRBvMTxbCAAAAAA8jRBvKfN0fbZEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBAPj6+ks3z3//9rvo2fkZxHOl2tnfe4z6CHkaQQeM6zW+z59Fri+s0FwW2745ow513subj4Pzh7fn4+/X1V+6nt2zg83sp3JITuG4E/FynGX58GUMPz5XBuHuIb9WFWLYQO4BBfkQKaz6WroRghOBzAr8/1YH7kgHsP6lf84PPhowACcHCMmWyJFiN/FBfrGYEPSAhGIdmWyAhALV4nS3EqomdZ8+o6wlBcfW5CcH25h+uN11EbVzXOAbzxUTZ4ktzWvCwTijE509TKjK8UEJwkiYH6UK2Ge3Wqffs1Q6q0Gf4Q21CAGtqHGTNwTk5ISi62LTz+PtBOpu/e6f668/X9z8tpVAKrPP/zL9NmI+Pr79fX8vtSGf2+Tv7+iYSvR0RRkkIWEmyzjLJnJhKlho+vxMBspyA9tZnZmBralIkBDRlKUxZgeaL5GmcY5znqeUWe137jYqFzO1e+S1UGe4XY0j/kp6ZTAaC+kxSIRglJHHvdrvFqajMtTTtiwu0Fem6tXST/fO7ZmiczsMup8YQb3OMc3q5QlGrguZpimoNe0e1fKG6FwlxF9uaxm3yB8uSa0IQSDuNXgzWFLXTak1Tkx5VeyKM6g+2ojzG2krFEOI8hWkW7JUjJgQLS5ec9F7pHP7Wj27f3fq8e1dkFrjoA/d7QrB+8evjm8wQCLPfS8+Xt0i6Ub4qIU8DbLoqKlm+smUAeauZL9775gcmBHR64JwlgxCpg0+zzwvFu5RxsRimXKe5eFpMGa7TfIsx7g9J/i1VBlKL2AEkNy17kVyq7ekVCgjiaTJYrQjxNs9puFwCUVIXMyLM72aPKUmzivBsKirXSxngr9O8f9A24AuBNFppUaM/WAVsW1gywJr7TfqsaWrSZyxXhDEySE1RNSOBGi3aCYEwB74OhbMh5lr+6+PDLrB+4EgIlqq+/vzKlgzWW/z3+y7n159fa/dcjH29CYGMmBDQUp/Z4Jtf5jA2T1ARs6l+kg8JNTMtyiZC2nMCd0LQgzAUq04IWLSAa8uQ1iJkEcXHRKwQhRxFvJU4XeuIC3wruKnE6zSnghV1c8qvmmSmxrIVZZu7kL/PA3XvafMHu4DDFoYMsKYgcbU1TU36jOUSXguklqJMZ9uSimleph8PnCHgJpalvWn3yXOzwPanNyH4/vuRd65ZgX/f3/f/FxlMzZIBX8yTEJRlJHnc0A4+W3pgTCMmBJd8y0jrAUjuJYOjpwcuvphiy+BKr/XhoFwL/2mSBLgWY4t5wcaEQGoFl5QUopGIytyqrwsxFVXZheQj1HrUHqTVH+wCLluoMsCaQg3V1jQ16TOWO8KclhDsxQ7ZQ7AwRkJwKfYibD3ZOs7+2nv09f/cfX2bCtPJBq7JSkJwFzL9bndCUIuWEFzynKBle6Z/85Qxomr5Yt0gQ6rK0wJb+NMSgnLps3mGQGyFP67tc55s/zRKF9I9njR6kGZ/sAu4EwJYs4I2a/6whKCW5oTgQUsGVqeVDO4/P419f9yN2PUFuifgjp4Q3DtaYfG+qettQUgI+F2NRyYE7MfTXL+HV8tqW+YtSxnsp8mTWR+6ZEAFzitoTAiUVninqVfB+RnsUSaZl+kU1VyOpSStSIc/2AWctoA1hXqri/Ro0r9k8FYJweWwTYVkj8J9kJ2+iUiZ2Sa7+u99HiewlhCQ7l8cYd+7fGnaY79EUwomk+BUcRB6QpDOphz8K4PrulB1pZ9Ue60+FJvK/TxZVHLI4FuAsyTX9wTRwZOxqZDeMYtlWoBUW6K1Yt0ble3IZkpfp/k2z0J05SSt6ABMRTkjY3ZXbiuqvYal9SB9/mAV4G3hnh4Qa4A15WvNmvSp+vSEwDBWK1JCkC02S11Iz88O77fKfw6X3oLu+WdmHUiBraoivRAbwo+btS5fXBTI/9GWMjc6ac5ATGhyOSuzgWJRO1/bvk7bxtqePQTB2lq8hoztBoFEEFOG9Ms75Xjc+CGipgemmBR9ZRmInDFshZOMwZRB12SI21BRlTKpiL94zSRlPl5kSGXOegn7Qgy0ThKfSy0IjTBzQLmT6PAHqcAthv2iaQtYM2/EKda0NWkVMCOM6g9eRV0uorG6MGYIRiDvSgcWdQhcewi6fnYIfgCh4mU458xOguOANY/C1GSNql+PF0gIQB1GQgDA5VIT16wdD+D5wJpHgYRAnc8Hr4P56mIA7rjjGgaULwCseRRvnhAAAN6MbBGTXU4tFjoxrBwUWPMoTE16VA0AAAAAAAAAAAAAAAAAAAAAAAAAAM5HegHGu8mgsb2g4h02uXhtwb2gMHu7z6C8kzUfR9tLMwEAQ3LSq5tfSIbaN43/bCxbiB3AIL8agjUfS1dCMELwAQDsjPBMIiEYh2ZbICEAtYwQfAB4KOY75J8rwwjPpFOGkzQ5SBcivlnbSf6TaE3oM/yhNiGANTUOsubgjBB8AHgk2WFJxULm9uRzZy7t4SBGcijT/WIM6V/qMSHCg2ef6rbHJP7bydrzVFTmWpr2xQXainTd2j4Q5K4ZGqf54zCoGkO8zTGSc38qFLUqaJ6mqNawd1T5qWRO0sPLrGncJn+wLLkmBIG00+jFYE1RO63WNDXpUbUnwqj+YCvKYyxVQXYrTIcB4MHw50O7zrtMPbY81PWSHkC3XhIOotJPHHcfNVv2IrlUywOYFKEF5HOyPAmBdHDpPJfH9tITsLgzttO72WNK0qwiPJuKyvVSBvjrNGcHk1UP+EKgx37JLWr0B6uAbQtLBlhzv0mfNU1N+ozlijBGBqkpqneG4BCHAeBhCEOx6oSARQu4tgxpLUIWUXxMxOIO89AfNnG61vGM8q0IsQyG12lOBSvq5pRfNclMjWUryjZ3IX/fAEb3njZ/sAs4bGHIAGsKEldb09Skz1gu4XvOnu9PCPodBoAHIQ7FPDGFTqlJ0/W+rEF7AoRa+E+TJMD1YDGv+m5KCKRWcElJIRqJqMyt+roQU1GVXUg+Qq1H7UFa/cEu4LKFKgOsKdRQbU1Tkz5juSPM8xKCfocB4DHIQ7G6QYZUlce5jeGgXEt/QlAufTbPEIit8Me1fc6T7Z9G6UK6x5NGD9LsD3YBd0IAa1bQZk0kBH6HAeARaEOxlnnLaa5fDDOHg3ItbUsGVOC8gsaEQGmFd5p6FZyfwR5lknmZTlHN5VhK0op0+INdwGkLWFOot7pIjyb9SwYjJASSFg5xGAAegD4Um8qdMFlUop5ejrYvjqfJHg5qteSzneVwZyq2OqZ3zJ5iLUCqLdFaEZZdRdmObKb0dZpv86zElVzSig7AVJQzMmZ35baiyutHQlvKCpr9wSrA28I9PSDWAGvK15o16VP16QmBYaz9M15RxzgMAGcTrK3Fa8jYPD2QCHKdts29wh6C9Ms73IOk/hCRIStPiknRV5aByBnDVjjJGEwZdE2GuGX+qpRJRfzFayYp8/EiQypz1kvYF2KgdZL4XGpBaISZA8qdRIc/SAVuMewXTVvAmnkjTrGmrUmrgBlhVH/wKupyEY3l0sNRDgMA+AmEipfhYDvR6MCaR2FqskbV4wKHAQDs+COCteMBPB9Y8yiQEJQl4TAA/HDcEQHjgxcA1jwKJAQUOAwAP5tsEZNdTi0WOjFKGBRY8yhMTXpUPT5wGAAAAAAAAAAAAAAAAAAAAAAAAAAAAI5GeinLu8mgsb3y5EU3XlXhtQX30szsjVOD8k7WfBzsS1QBAK/JCOd/PVeG2rff/2wsW4gdwCC/ZIM1H0tXQjBC8AEA7IzwTCIhGIdmWyAhALWMEHwAeCjmuQbPlWGEZ7Li0LMTNDlIFyK+7d1J/qtrTegz/KE2IYA1NQ6y5uCMEHwAeCTZAV7FQub25HPngO3hIEZyUNj9YgzpX+rRNcKDZ580qL3WIzuaZCoqcy1N++ICbUW6bm0fUnPXDI3T/BEtVI0h3uYYyVlUFYpaFTRPU1Rr2Duq/KQ8J+mBetY0bpM/WJZcE4JA2mn0YrCmqJ1Wa5qa9KjaE2FUf7AV5TGWqiC7FabDUGG3C2UQA+Ag+DPLi2EKdwZr6pPlQcOX9FDE9ZJwKJhybvrF6gCSm5a9SC7V8gAmRWgB+ew2T0IgHaY7z+VR0vRUNu7E9PRu9piSNKsIz6aicr2UAf46zdlhedUDvhDoUXRyixr9wSpg28KSAdbcb9JnTVOTPmO5IoyRQWqK6p0hOMJhzCAGwGEIQ7HqhIBFC7i2DGktQhZRfEzE4s4L0R9wcbrWERf4VoRYBsPrNKeCFXVzyq+aZKbGshVlm7uQvy8i6d7T5g92AYctDBlgTUHiamuamvQZyyW8lhBYiupPCDodpj6IAdCKOBTzxBQ6pSZN1/uyBm2AItTCf5o8P67FWOZt4k0JgdQK7nkuRCMRlblVXxdiKqqyC8lHqPWoPUirP9gFXLZQZYA1hRqqrWlq0mcsd4R5XkLQ5zCuIAbAIchDsbpBhlSV52kyhoNyLf0JQbn02TxDILbCH9f2OU+2fxqlC+keTxo9SLM/2AXcCQGsWUGbNZEQ+BwGCQF4FNpQrGXecpqt1dM6GYxa2pYMqMB5BY0JgdIK7zT1Kjg/gz3KJPMynaKay7GUpBXp8Ae7gNMWsKZQb3WRHk36lwxGSAgkLfQ7jBXEADgGfSg2lTthsqhEPb0cbV8cT5M9HNRqyWc7y+FOvh+H3jF7irUAqbZEa0VYdhVlO7KZ0tdpvs2zEldySSs6AFNRzsiY3ZXbiiqvHwltKSto9gerAG8L9/SAWAOsKV9r1qRP1acnBIax9s94RR3hMHoQA+AIgrW1eA0Zm6cHEkGu07a5V9hDkH55h3uQ1B8iMmTlSTEp+soyEDlj2AonGYMpg67JELfMX5UyqYi/eM0kZT5eZEhlznoJ+0IMtE4Sn0stCI0wc0C5k+jwB6nALYb9omkLWDNvxCnWtDVpFTAjjOoPXkVdLqKxXHo4yGH0IAYAeBFCxctwsHd4dGDNozA1WaPqcYHDAAB2/BEBi4XjA2seBRKCsiQcBoAfjjsiYHzwAsCaR4GEgAKHAeBnky38scupxUInRgmDAmsehalJj6rHBw4DAAAAAAAAAAAAAAAAAAAAAAAAAADA0UgvZXk3GTS2V5686MarKry24F6amb1xalDeyZqPg32JKgDgNRnhsM/nylD79vufjWULsQMY5JdssOZj6UoIRgg+AICdEZ5JJATj0GwLJASglhGCDwAPxTzX4LkyjPBMVhx6doImB+lCxLe9O8l/da0JfYY/1CYEsKbGQdYcnBGCDwCPJDs7q1jI3J587hywPRzESA4Ku1+MIf1LPbpGePDskwa113pkR5NMRWWupWlfXKCtSNet7UNq7pqhcZo/ooWqMcTbHCM5i6pCUauC5mmKag17R5WflOckPVDPmsZt8gfLkmtCEEg7jV4M1hS102pNU5MeVXsijOoPtqI8xlIVZLfCdBhOFLy8CJwIf2Z5MUzhzmBNXbs8o/OSHoq4XhIOBVPOTb9YHUBy07IXyaVaHqykCC0gn93mSQikw3TnuTxKmj7s3Inp6d3sMSVpVhGeTUXleikD/HWas8Pyqgd8IdAIJ7eo0R+sArYtLBlgzf0mfdY0NekzlivCGBmkpqjeGYIDHMaOcgAchuBe1QkBixZwbRnSWoQsoviYiMWdF6I/4OJ0rSMu8K0IsQyG12lOBSvq5pRfNclMjWUryjZ3IX9fTNK9p80f7AIOWxgywJqCxNXWNDXpM5ZLeC0hsBTVnxD0OYzD3AAchTgU88QUOqUmTdf7sgZtgCLUwn+aJAGuxdhiXrAxIZBawSUlhWjkAWdu1deFmIqq7ELyIUs9akBr9Qe7gMsWqgywplBDtTVNTfqM5Y4wz0sI+hzGYW4ADkIeitUNMqSqPE+TPQN2WkJQLn02zxCIrfDHtX3Ok+2fRulCuseTRg/S7A92AXdCAGtW0GZNJAQ+h0FCAB6FNhRrmbecZmv1tE4Go5a2JQMqcF5BY0KgtMI7Tb0Kzs9gjzLJvEynqOZyzGZqRTr8wS7gtAWsKdRbXaRHk/4lgxESAkkL3Q6DJQPwIPSh2FTuhMmiEvX0crR9cTxNrg0y+p4gOngyNhXSO2bPlRYg1ZZorQjLrqJsRzZT+jrNt3lW4kouaUUHYCrKGRmzu3JbUe2N0Fo06/MHqwBvC/f0gFgDrClfa9akT9WnJwSGsfbPeEUd4DB2lAOgm2BtLV5DxubpgUSQ67Rt7hX2EKRf3uEeJPWHiAxZeVJMir6yDETOGLbCScZgyqBrMsQt81elTCriL14zSZmPFxlSmbNewr4QA62TxOdSC0IjzBxQ7iQ6/EEqcIthv2jaAtbMG3GKNW1NWgXMCKP6g1dRl4toLJceDnIYM8oBAF6BUPEynL7lSnA+sOZRmJqsUfW4wGEAADv+iICNQuMDax4FEoKyJBwGgB+OOyJgfPACwJpHgYSAAocB4GeTLWKyy6nFQidGCYMCax6FqUmPqscHDgMAAAAAAAAAAAAAhuV/tfBbFRZ7nicAAAAASUVORK5CYII=" alt="" />

pprint

让 dict 格式化输出

>>> import pprint
>>> pprint.pprint(a)
{'book': 'www.itdiffer.com',
'goal': 'from beginner to master',
'lang': 'Python',
'teacher': 'qiwsir'}

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArAAAABUCAIAAAD1bJNcAAATi0lEQVR4nO2dzZ3jLAyHU8FWsOdcpoKpYC5cpxI3sG3QwtuEm9gWUse+B9sxAn0BdkIm/+e3h52YYCHJQnzEXC4cv//7/v53//f18cGWAq/A92diyu+vP7+eLRA4jRBvMTxbCAAAAAA8jRBvKfN0fbZEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBAPj6+ks3z3//9rvo2fkZxHOl2tnfe4z6CHkaQQeM6zW+z59Fri+s0FwW2745ow513subj4Pzh7fn4+/X1V+6nt2zg83sp3JITuG4E/FynGX58GUMPz5XBuHuIb9WFWLYQO4BBfkQKaz6WroRghOBzAr8/1YH7kgHsP6lf84PPhowACcHCMmWyJFiN/FBfrGYEPSAhGIdmWyAhALV4nS3EqomdZ8+o6wlBcfW5CcH25h+uN11EbVzXOAbzxUTZ4ktzWvCwTijE509TKjK8UEJwkiYH6UK2Ge3Wqffs1Q6q0Gf4Q21CAGtqHGTNwTk5ISi62LTz+PtBOpu/e6f668/X9z8tpVAKrPP/zL9NmI+Pr79fX8vtSGf2+Tv7+iYSvR0RRkkIWEmyzjLJnJhKlho+vxMBspyA9tZnZmBralIkBDRlKUxZgeaL5GmcY5znqeUWe137jYqFzO1e+S1UGe4XY0j/kp6ZTAaC+kxSIRglJHHvdrvFqajMtTTtiwu0Fem6tXST/fO7ZmiczsMup8YQb3OMc3q5QlGrguZpimoNe0e1fKG6FwlxF9uaxm3yB8uSa0IQSDuNXgzWFLXTak1Tkx5VeyKM6g+2ojzG2krFEOI8hWkW7JUjJgQLS5ec9F7pHP7Wj27f3fq8e1dkFrjoA/d7QrB+8evjm8wQCLPfS8+Xt0i6Ub4qIU8DbLoqKlm+smUAeauZL9775gcmBHR64JwlgxCpg0+zzwvFu5RxsRimXKe5eFpMGa7TfIsx7g9J/i1VBlKL2AEkNy17kVyq7ekVCgjiaTJYrQjxNs9puFwCUVIXMyLM72aPKUmzivBsKirXSxngr9O8f9A24AuBNFppUaM/WAVsW1gywJr7TfqsaWrSZyxXhDEySE1RNSOBGi3aCYEwB74OhbMh5lr+6+PDLrB+4EgIlqq+/vzKlgzWW/z3+y7n159fa/dcjH29CYGMmBDQUp/Z4Jtf5jA2T1ARs6l+kg8JNTMtyiZC2nMCd0LQgzAUq04IWLSAa8uQ1iJkEcXHRKwQhRxFvJU4XeuIC3wruKnE6zSnghV1c8qvmmSmxrIVZZu7kL/PA3XvafMHu4DDFoYMsKYgcbU1TU36jOUSXguklqJMZ9uSimleph8PnCHgJpalvWn3yXOzwPanNyH4/vuRd65ZgX/f3/f/FxlMzZIBX8yTEJRlJHnc0A4+W3pgTCMmBJd8y0jrAUjuJYOjpwcuvphiy+BKr/XhoFwL/2mSBLgWY4t5wcaEQGoFl5QUopGIytyqrwsxFVXZheQj1HrUHqTVH+wCLluoMsCaQg3V1jQ16TOWO8KclhDsxQ7ZQ7AwRkJwKfYibD3ZOs7+2nv09f/cfX2bCtPJBq7JSkJwFzL9bndCUIuWEFzynKBle6Z/85Qxomr5Yt0gQ6rK0wJb+NMSgnLps3mGQGyFP67tc55s/zRKF9I9njR6kGZ/sAu4EwJYs4I2a/6whKCW5oTgQUsGVqeVDO4/P419f9yN2PUFuifgjp4Q3DtaYfG+qettQUgI+F2NRyYE7MfTXL+HV8tqW+YtSxnsp8mTWR+6ZEAFzitoTAiUVninqVfB+RnsUSaZl+kU1VyOpSStSIc/2AWctoA1hXqri/Ro0r9k8FYJweWwTYVkj8J9kJ2+iUiZ2Sa7+u99HiewlhCQ7l8cYd+7fGnaY79EUwomk+BUcRB6QpDOphz8K4PrulB1pZ9Ue60+FJvK/TxZVHLI4FuAsyTX9wTRwZOxqZDeMYtlWoBUW6K1Yt0ble3IZkpfp/k2z0J05SSt6ABMRTkjY3ZXbiuqvYal9SB9/mAV4G3hnh4Qa4A15WvNmvSp+vSEwDBWK1JCkC02S11Iz88O77fKfw6X3oLu+WdmHUiBraoivRAbwo+btS5fXBTI/9GWMjc6ac5ATGhyOSuzgWJRO1/bvk7bxtqePQTB2lq8hoztBoFEEFOG9Ms75Xjc+CGipgemmBR9ZRmInDFshZOMwZRB12SI21BRlTKpiL94zSRlPl5kSGXOegn7Qgy0ThKfSy0IjTBzQLmT6PAHqcAthv2iaQtYM2/EKda0NWkVMCOM6g9eRV0uorG6MGYIRiDvSgcWdQhcewi6fnYIfgCh4mU458xOguOANY/C1GSNql+PF0gIQB1GQgDA5VIT16wdD+D5wJpHgYRAnc8Hr4P56mIA7rjjGgaULwCseRRvnhAAAN6MbBGTXU4tFjoxrBwUWPMoTE16VA0AAAAAAAAAAAAAAAAAAAAAAAAAAM5HegHGu8mgsb2g4h02uXhtwb2gMHu7z6C8kzUfR9tLMwEAQ3LSq5tfSIbaN43/bCxbiB3AIL8agjUfS1dCMELwAQDsjPBMIiEYh2ZbICEAtYwQfAB4KOY75J8rwwjPpFOGkzQ5SBcivlnbSf6TaE3oM/yhNiGANTUOsubgjBB8AHgk2WFJxULm9uRzZy7t4SBGcijT/WIM6V/qMSHCg2ef6rbHJP7bydrzVFTmWpr2xQXainTd2j4Q5K4ZGqf54zCoGkO8zTGSc38qFLUqaJ6mqNawd1T5qWRO0sPLrGncJn+wLLkmBIG00+jFYE1RO63WNDXpUbUnwqj+YCvKYyxVQXYrTIcB4MHw50O7zrtMPbY81PWSHkC3XhIOotJPHHcfNVv2IrlUywOYFKEF5HOyPAmBdHDpPJfH9tITsLgzttO72WNK0qwiPJuKyvVSBvjrNGcHk1UP+EKgx37JLWr0B6uAbQtLBlhzv0mfNU1N+ozlijBGBqkpqneG4BCHAeBhCEOx6oSARQu4tgxpLUIWUXxMxOIO89AfNnG61vGM8q0IsQyG12lOBSvq5pRfNclMjWUryjZ3IX/fAEb3njZ/sAs4bGHIAGsKEldb09Skz1gu4XvOnu9PCPodBoAHIQ7FPDGFTqlJ0/W+rEF7AoRa+E+TJMD1YDGv+m5KCKRWcElJIRqJqMyt+roQU1GVXUg+Qq1H7UFa/cEu4LKFKgOsKdRQbU1Tkz5juSPM8xKCfocB4DHIQ7G6QYZUlce5jeGgXEt/QlAufTbPEIit8Me1fc6T7Z9G6UK6x5NGD9LsD3YBd0IAa1bQZk0kBH6HAeARaEOxlnnLaa5fDDOHg3ItbUsGVOC8gsaEQGmFd5p6FZyfwR5lknmZTlHN5VhK0op0+INdwGkLWFOot7pIjyb9SwYjJASSFg5xGAAegD4Um8qdMFlUop5ejrYvjqfJHg5qteSzneVwZyq2OqZ3zJ5iLUCqLdFaEZZdRdmObKb0dZpv86zElVzSig7AVJQzMmZ35baiyutHQlvKCpr9wSrA28I9PSDWAGvK15o16VP16QmBYaz9M15RxzgMAGcTrK3Fa8jYPD2QCHKdts29wh6C9Ms73IOk/hCRIStPiknRV5aByBnDVjjJGEwZdE2GuGX+qpRJRfzFayYp8/EiQypz1kvYF2KgdZL4XGpBaISZA8qdRIc/SAVuMewXTVvAmnkjTrGmrUmrgBlhVH/wKupyEY3l0sNRDgMA+AmEipfhYDvR6MCaR2FqskbV4wKHAQDs+COCteMBPB9Y8yiQEJQl4TAA/HDcEQHjgxcA1jwKJAQUOAwAP5tsEZNdTi0WOjFKGBRY8yhMTXpUPT5wGAAAAAAAAAAAAAAAAAAAAAAAAAAAAI5GeinLu8mgsb3y5EU3XlXhtQX30szsjVOD8k7WfBzsS1QBAK/JCOd/PVeG2rff/2wsW4gdwCC/ZIM1H0tXQjBC8AEA7IzwTCIhGIdmWyAhALWMEHwAeCjmuQbPlWGEZ7Li0LMTNDlIFyK+7d1J/qtrTegz/KE2IYA1NQ6y5uCMEHwAeCTZAV7FQub25HPngO3hIEZyUNj9YgzpX+rRNcKDZ580qL3WIzuaZCoqcy1N++ICbUW6bm0fUnPXDI3T/BEtVI0h3uYYyVlUFYpaFTRPU1Rr2Duq/KQ8J+mBetY0bpM/WJZcE4JA2mn0YrCmqJ1Wa5qa9KjaE2FUf7AV5TGWqiC7FabDUGG3C2UQA+Ag+DPLi2EKdwZr6pPlQcOX9FDE9ZJwKJhybvrF6gCSm5a9SC7V8gAmRWgB+ew2T0IgHaY7z+VR0vRUNu7E9PRu9piSNKsIz6aicr2UAf46zdlhedUDvhDoUXRyixr9wSpg28KSAdbcb9JnTVOTPmO5IoyRQWqK6p0hOMJhzCAGwGEIQ7HqhIBFC7i2DGktQhZRfEzE4s4L0R9wcbrWERf4VoRYBsPrNKeCFXVzyq+aZKbGshVlm7uQvy8i6d7T5g92AYctDBlgTUHiamuamvQZyyW8lhBYiupPCDodpj6IAdCKOBTzxBQ6pSZN1/uyBm2AItTCf5o8P67FWOZt4k0JgdQK7nkuRCMRlblVXxdiKqqyC8lHqPWoPUirP9gFXLZQZYA1hRqqrWlq0mcsd4R5XkLQ5zCuIAbAIchDsbpBhlSV52kyhoNyLf0JQbn02TxDILbCH9f2OU+2fxqlC+keTxo9SLM/2AXcCQGsWUGbNZEQ+BwGCQF4FNpQrGXecpqt1dM6GYxa2pYMqMB5BY0JgdIK7zT1Kjg/gz3KJPMynaKay7GUpBXp8Ae7gNMWsKZQb3WRHk36lwxGSAgkLfQ7jBXEADgGfSg2lTthsqhEPb0cbV8cT5M9HNRqyWc7y+FOvh+H3jF7irUAqbZEa0VYdhVlO7KZ0tdpvs2zEldySSs6AFNRzsiY3ZXbiiqvHwltKSto9gerAG8L9/SAWAOsKV9r1qRP1acnBIax9s94RR3hMHoQA+AIgrW1eA0Zm6cHEkGu07a5V9hDkH55h3uQ1B8iMmTlSTEp+soyEDlj2AonGYMpg67JELfMX5UyqYi/eM0kZT5eZEhlznoJ+0IMtE4Sn0stCI0wc0C5k+jwB6nALYb9omkLWDNvxCnWtDVpFTAjjOoPXkVdLqKxXHo4yGH0IAYAeBFCxctwsHd4dGDNozA1WaPqcYHDAAB2/BEBi4XjA2seBRKCsiQcBoAfjjsiYHzwAsCaR4GEgAKHAeBnky38scupxUInRgmDAmsehalJj6rHBw4DAAAAAAAAAAAAAAAAAAAAAAAAAADA0UgvZXk3GTS2V5686MarKry24F6amb1xalDeyZqPg32JKgDgNRnhsM/nylD79vufjWULsQMY5JdssOZj6UoIRgg+AICdEZ5JJATj0GwLJASglhGCDwAPxTzX4LkyjPBMVhx6doImB+lCxLe9O8l/da0JfYY/1CYEsKbGQdYcnBGCDwCPJDs7q1jI3J587hywPRzESA4Ku1+MIf1LPbpGePDskwa113pkR5NMRWWupWlfXKCtSNet7UNq7pqhcZo/ooWqMcTbHCM5i6pCUauC5mmKag17R5WflOckPVDPmsZt8gfLkmtCEEg7jV4M1hS102pNU5MeVXsijOoPtqI8xlIVZLfCdBhOFLy8CJwIf2Z5MUzhzmBNXbs8o/OSHoq4XhIOBVPOTb9YHUBy07IXyaVaHqykCC0gn93mSQikw3TnuTxKmj7s3Inp6d3sMSVpVhGeTUXleikD/HWas8Pyqgd8IdAIJ7eo0R+sArYtLBlgzf0mfdY0NekzlivCGBmkpqjeGYIDHMaOcgAchuBe1QkBixZwbRnSWoQsoviYiMWdF6I/4OJ0rSMu8K0IsQyG12lOBSvq5pRfNclMjWUryjZ3IX9fTNK9p80f7AIOWxgywJqCxNXWNDXpM5ZLeC0hsBTVnxD0OYzD3AAchTgU88QUOqUmTdf7sgZtgCLUwn+aJAGuxdhiXrAxIZBawSUlhWjkAWdu1deFmIqq7ELyIUs9akBr9Qe7gMsWqgywplBDtTVNTfqM5Y4wz0sI+hzGYW4ADkIeitUNMqSqPE+TPQN2WkJQLn02zxCIrfDHtX3Ok+2fRulCuseTRg/S7A92AXdCAGtW0GZNJAQ+h0FCAB6FNhRrmbecZmv1tE4Go5a2JQMqcF5BY0KgtMI7Tb0Kzs9gjzLJvEynqOZyzGZqRTr8wS7gtAWsKdRbXaRHk/4lgxESAkkL3Q6DJQPwIPSh2FTuhMmiEvX0crR9cTxNrg0y+p4gOngyNhXSO2bPlRYg1ZZorQjLrqJsRzZT+jrNt3lW4kouaUUHYCrKGRmzu3JbUe2N0Fo06/MHqwBvC/f0gFgDrClfa9akT9WnJwSGsfbPeEUd4DB2lAOgm2BtLV5DxubpgUSQ67Rt7hX2EKRf3uEeJPWHiAxZeVJMir6yDETOGLbCScZgyqBrMsQt81elTCriL14zSZmPFxlSmbNewr4QA62TxOdSC0IjzBxQ7iQ6/EEqcIthv2jaAtbMG3GKNW1NWgXMCKP6g1dRl4toLJceDnIYM8oBAF6BUPEynL7lSnA+sOZRmJqsUfW4wGEAADv+iICNQuMDax4FEoKyJBwGgB+OOyJgfPACwJpHgYSAAocB4GeTLWKyy6nFQidGCYMCax6FqUmPqscHDgMAAAAAAAAAAAAAhuV/tfBbFRZ7nicAAAAASUVORK5CYII=" alt="" />

Python学习笔记1—模块的更多相关文章

  1. Python学习笔记之模块与包

    一.模块 1.模块的概念 模块这一概念很大程度上是为了解决代码的可重用性而出现的,其实这一概念并没有多复杂,简单来说不过是一个后缀为 .py 的 Python 文件而已 例如,我在某个工作中经常需要打 ...

  2. Python学习笔记—itertools模块

    这篇是看wklken的<Python进阶-Itertools模块小结> 学习itertools模块的学习笔记 在看itertools中各函数的源代码时,刚开始还比较轻松,但后面看起来就比较 ...

  3. python学习笔记_week5_模块

    模块 一.定义: 模块:用来从逻辑上组织python代码(变量,函数,类,逻辑:实现一个功能), 本质就是.py结尾的python文件(文件名:test.py,对应模块名:test) 包:用来从逻辑上 ...

  4. python学习笔记(八)-模块

    大型python程序以模块和包的形式组织.python标准库中包含大量的模块.一个python文件就是一个模块.1.标准模块 python自带的,不需要你安装的2.第三方模块 需要安装,别人提供的. ...

  5. Python学习笔记-常用模块

    1.python模块 如果你退出 Python 解释器并重新进入,你做的任何定义(变量和方法)都会丢失.因此,如果你想要编写一些更大的程序,为准备解释器输入使用一个文本编辑器会更好,并以那个文件替代作 ...

  6. Python学习笔记2——模块的发布

    1.为模块nester创建文件夹nester,其中包含:nester.py(模块文件): """这是"nester.py"模块,提供了一个名为prin ...

  7. python学习笔记十——模块与函数

    第五章 模块与函数 5.1 python程序的结构 函数+类->模块              模块+模块->包                 函数+类+模块+包=Python pyth ...

  8. Python学习笔记14—模块

    在python中所有的模块都被加入到了sys.path中,用下面的方法可以看见模块的位置. >>> import sys >>> import pprint > ...

  9. python学习笔记:模块——自定义模块的3种导入方式

    一.定义 模块就是用一堆的代码实现了一些功能的代码的集合,通常一个或者多个函数写在一个.py文件里,而如果有些功能实现起来很复杂,那么就需要创建n个.py文件,这n个.py文件的集合就是模块.如果不懂 ...

随机推荐

  1. PostgreSQL Hot Standby的搭建

    一. 简介:          PG在9.*版本后热备提供了新的一个功能,那就是Stream Replication的读写分离,是PG高可用性的一个典型应用.这个功能在oracle中叫active d ...

  2. hdwiki 在IIS 下的伪静态

    HDwiki有SEO设置的功能,此功能可以将HDwiki的页面进行URL静态化转换,从而使HDwiki内容更容易被搜索引擎挖掘,提高被收录的机率.注意事项        1.本功能对服务器环境有特殊要 ...

  3. sql语句返回主键SCOPE_IDENTITY()

    在sql语句后使用 SCOPE_IDENTITY() 当然您也可以使用 SELECT @@IDENTITY 但是使用 SELECT @@IDENTITY是去全局最新. 有可能取得值不正确. 示例:in ...

  4. Optimal Milking 分类: 图论 POJ 最短路 查找 2015-08-10 10:38 3人阅读 评论(0) 收藏

    Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 13968 Accepted: 5044 Case ...

  5. HDU(3555),数位DP

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others ...

  6. C#之桶中取黑白球问题

    <编程之美>284页,问题4.6:桶中取黑白球. 有一个桶,里面有白球.黑球各100个,人们必须按照以下规则把球取出来: 1. 每次从桶中拿两个球: 2. 如果两球同色,再放入一个黑球: ...

  7. java提高篇---HashMap

    HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在.在HashMap中,key-value总是会当做一个整体来处理,系统会根据 ...

  8. Mysql-学习笔记(==》权限管理 十 三)

    -- 用户与权限管理-- 查看当前服务器上的所有账号密码主机SELECT USER,PASSWORD,HOST FROM mysql.user; -- 设置账号密码SET PASSWORD=PASSW ...

  9. java--4种内部类

    内部类: 一 非静态内部类 //非静态内部类 //非静态内部类可任意调用外部类的局部变量,无论是否private //在外部类中要实例化内部类:InnerClass inner = new Inner ...

  10. jquery append()详解

    1 http://www.365mini.com/page/jquery-append.htm 2 http://blog.csdn.net/chaiyining007/article/details ...