题意:有m个石头围成一圈,编号分别为0到m-1,现在有n只青蛙,都在0号石头上,第i只青蛙会从当前编号为p的石头跳到编号为(p+ai)%m的石头上。被青蛙经过的石头都会被占领,求这m块石头中所有被占领过的石头的编号和。

题解:对于第i只青蛙,它所能跳到的最小的位置是gcd(ai, m)

设最小位置为z,需要跳x圈,跳了y步,可得方程:x*m+z=ai*y

即:x*m-ai*y = z  由扩展欧几里得定理可知,z的最小整数解为gcd(m,ai)

因为对于单独的每一只青蛙计算结果会重复计算,所以利用容斥对每一个m的因子计算。

首先对于每一个x=gcd(ai,m),如果m的一个因数fac%x==0,那么fac就会被跳到。

然后对于每一个会碰到的因数计算,当m的一个因数j的因数i被计算的时候,j就会被重复计算,要减去。

虽然题解很有道理,但是我想了好久也没明白容斥不是奇加偶减吗,怎么这么算了= =

后来搜题解明白了此题gcd太多,二进制枚举会爆longlong,dfs也会超时,http://www.acmtime.com/?p=864 一个神奇的剪枝。

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath> using namespace std; const int N = ;
int fac[N], cnt;
int cc[N]; void cal(int x) {
cnt = ;
int limit = sqrt(x);
fac[cnt++] = ;
for (int i = ; i < limit; ++i) {
if (x % i == ) fac[cnt++] = i, fac[cnt++] = x/i;
}
if (limit*limit == x) fac[cnt++] = limit;
else if (x % limit == ) fac[cnt++] = limit, fac[cnt++] = x/limit;
sort(fac, fac+cnt);
} int main()
{
int T, cas = ;
int n, m;
scanf("%d", &T);
while (T--) {
printf("Case #%d: ", ++cas);
scanf("%d%d", &n, &m); //1e4 1e9
cal(m);
memset(cc, , sizeof cc);
int ai;
for (int i = ; i < n; ++i) {
scanf("%d", &ai);
int gcd = __gcd(ai, m);
for (int i = ; i < cnt; ++i) {
if (fac[i] % gcd == ) cc[i] = ;
}
}
long long ans = ;
for (int i = ; i < cnt; ++i) {
if (cc[i] == ) continue;
long long tmp = (m-) / fac[i];
ans += tmp * (tmp+) / * fac[i] * cc[i];
for (int j = i+; j < cnt; ++j) {
if (fac[j] % fac[i] == ) cc[j] -= cc[i];
}
}
printf("%lld\n", ans);
}
return ;
}

hdu5514-Frogs(容斥原理)好题的更多相关文章

  1. HDU5514 Frogs

    /* HDU5514 Frogs http://acm.hdu.edu.cn/showproblem.php?pid=5514 容斥原理 * * */ #include <cstdio> ...

  2. 【做题】hdu5514 Frogs——另类容斥

    题意是给出n个m的约数,问[0,m-1]中至少被其中一个约数整除的整数和.(n<=10000,m<=1000000000) 直接容斥的话,是2^n再拖个log的复杂度,加上当前的数大于m时 ...

  3. hdu4135Co-prime 容斥原理水题

    //问一个区间[a,b]与n互素的数的个数 //利用容斥原理可知 //在[a,b] 区间内对n的素数因子 //ans = 被一个数整除的数的个数 - 被两个数的最小公倍数整除的数的个数 + 被三个数的 ...

  4. 从HDU2588:GCD 到 HDU5514:Frogs (欧拉公式)

    The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the ...

  5. HDU 5514 Frogs (容斥原理+因子分解)

    题目链接 题意:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少? 题解:暴力肯定会超时,首先分解出m的因子,自己本身不用分,因为石头编号是0 ...

  6. HDU 5514 Frogs (容斥原理)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意 : 有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过a[i] ...

  7. hdu 6021 MG loves string (一道容斥原理神题)(转)

    MG loves string    Accepts: 30    Submissions: 67  Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  8. hdu 4235 容斥原理模板题

    题目大意: 输入样例个数T,每个样例输入三个数a,b,n,求[a,b]之间与n互素的个数 基本思路: 互斥,想想这个:AUBUC=A+B+C-A∩B-A∩C-B∩C+A∩B∩C fac存的是n的素因数 ...

  9. poj 2773(容斥原理)

    容斥原理入门题吧. Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9798   Accepted: 3 ...

  10. 【BZOJ2005】【NOI2010】能量采集(莫比乌斯反演,容斥原理)

    [BZOJ2005][NOI2010]能量采集(莫比乌斯反演,容斥原理) 题面 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量 ...

随机推荐

  1. MyEclipse 10离线安装PyDev插件

    PyDev for Eclipse, 经过测试,一般在线安装会失败(不能访问某些网站所致) 以下为离线安装步骤 1 下载 PyDev 2.8.2,  链接:http://sourceforge.net ...

  2. [HIHO1260]String Problem I(trie树)

    题目链接:http://hihocoder.com/problemset/problem/1260 n个字符串,m次询问.每次询问给一个字符串,问这个字符串仅可以在一个地方加一个字母.这样操作后与n个 ...

  3. Linux系统信息查看命令

    一.系统 # uname -a #查看内核/操作系统/CPU信息 # head -n 1 /etc/issue #查看操作系统版本 # cat /proc/cpuinfo #查看CPU信息 # hos ...

  4. 为Gradle添加tomcat插件,调试WEB应用

    Gradle提供了不输于maven的依赖管理 提供了强大的test功能,输出优美的测试报告 并且提供war插件,使用内置的jetty调试WEB应用 因为博主偏偏钟情于tomcat,所以希望使用tomc ...

  5. R语言数据读入函数read.table

    1.read.table:可以读TXT也可以读CSV (1)file:文件名 (2)header:是否包含表头 (3)sep:分隔符,如果不设定默认是空格 (4)dec:标志小数点符号,有些国家的小数 ...

  6. noi2015的回忆和教训

    前几天偶然打开了bzoj的rank list,突然发现——我竟然掉出了第一版!!! 自从我5月还是6月刷进第一版之后,我曾经天真的以为大概半年之内我还能保留在第一版内吧. 结果仅仅短短的4个月,我就已 ...

  7. Chrome 快捷键使用

    窗口和标签页快捷方式 Ctrl+N 打开新窗口 按住 Ctrl‎ 键,然后点击链接 在新标签页中打开链接 按住 Shift 键,然后点击链接 在新窗口中打开链接 Alt+F4 关闭当前窗口 Ctrl+ ...

  8. IE6下margin出现双边距

    在IE6下,块元素有浮动和横向margin的时候,横向的margin值会被放大成两倍 解决方法:添加display:inline; eg:下面的例子在IE6下会有两倍边距 <style> ...

  9. [转载] mysql5.6 删除之前的ibdata1文件后再重新生成,遇到[Warning] Info table is not ready to be used. Table 'mysql.slave_master_info' cannot be opened.问题

    [转载] mysql5.6 删除之前的ibdata1文件后再重新生成,遇到[Warning] Info table is not ready to be used. Table 'mysql.slav ...

  10. Drawable和Bitmap的区别

    Bitmap - 称作位图,一般位图的文件格式后缀为bmp,当然编码器也有很多如RGB565.RGB888.作为一种逐像素的显示对象执行效率高,但是缺点也很明显存储效率低.我们理解为一种存储对象比较好 ...