什么是位运算?

位运算是在数字底层(即表示数字的 32 个数位)进行运算的。由于位运算是低级的运算操作,所以速度往往也是最快的(相对其它运算如加减乘除来说),并且借助位运算有时我们还能实现更简单的程序逻辑,缺点是很不直观,许多场合不能够使用。

位运算只对整数起作用,如果一个运算子不是整数,会自动转为整数后再运行。虽然在 JavaScript 内部,数值都是以64位浮点数的形式储存,但是做位运算的时候,是以32位带符号的整数进行运算的,并且返回值也是一个32位带符号的整数。

关于二进制

以下来源于w3shool:

ECMAScript 整数有两种类型,即有符号整数(允许用正数和负数)和无符号整数(只允许用正数)。在 ECMAScript 中,所有整数字面量默认都是有符号整数,这意味着什么呢?

有符号整数使用 31 位表示整数的数值,用第 32 位表示整数的符号,0 表示正数,1 表示负数。数值范围从 -2147483648 到 2147483647。

可以以两种不同的方式存储二进制形式的有符号整数,一种用于存储正数,一种用于存储负数。正数是以真二进制形式存储的,前 31 位中的每一位都表示 2 的幂,从第 1 位(位 0)开始,表示 20,第 2 位(位 1)表示 21。没用到的位用 0 填充,即忽略不计。例如,下图展示的是数 18 的表示法。

以上来源于w3shool:

那在js中二进制和十进制如何转换呢?如下

// 十进制 => 二进制
let num = 10;
console.log(num.toString(2));
// 二进制 => 十进制
let num1 = 1001;
console.log(parseInt(num1, 2));

js中都有哪些位运算?

  • 按位或 |

对每对比特位执行与(AND)操作。只有 a 和 b 任意一位为1时,a | b 就是 1。如下表9 | 3 = 11

9 = 1 0 0 1
3 = 0 0 1 1
11 = 1 0 1 1

应用场景:

  1. 取整

对于一般的整数,返回值不会有任何变化。对于大于2的32次方的整数,大于32位的数位都会被舍去。

function toInt(num) {
return num | 0
}
console.log(toInt(1.8)) // 1
console.log(toInt(1.23232)) // 1
  1. 边界判断

假如我们有一个拖动事件,规定被拖动模块需要在容器内部运动,这时就有边界判断,这其中又包括上,下,左,右四种单一边界,同时还有类似上右,上左等叠加边界,如果我们需要记录这种状态,通过位运算要比使用if判断要简单一些,上右下左四种边界分别用1,2,4,8表示,代码如下:

let flag = 0;
if (pos.left < left) flag = flag | 8;
if (pos.right > right) flag = flag | 2;
if (pos.bottom > bottom) flag = flag | 4;
if (pos.top < top) flag = flag | 1;
switch(flag) {
// 上
case 1:
// 右
case 2:
// 右上
case 3:
// 下
case 4:
// 右下
case 6:
// 左
case 8:
// 左上
case 9:
// 左下
case 12:
// code
}

同理,假如我们有一系列控制开关,通过 a | b | c的形式要比 '{a: true, b: true, c: true}' 简单的多。

  • 按位与 &

对每对比特位执行与(AND)操作。只有 a 和 b 都为1时,a & b 就是 1。如下表9 & 3 = 1

9 = 1 0 0 1
3 = 0 0 1 1
1 = 0 0 0 1

由上表我们可以清晰的看出按位与的计算规则,由此可以引出一系列应用场景

  1. 判断奇偶

我们知道奇数的二进制最后一位必然为1,所以任意一个奇数 & 1 一定等于1。

// 判断奇偶
return number & 1 === 1
  1. 系统权限

业务场景:

我们假设某个管理系统有a, b, c, d四级权限,其中不同帐号分别有不同的权限(可能有1个或多个),例如admin 账户有a + b +c +d 四级权限,guest用户有b + c权限,那这时候应该怎么设计更简单一些呢?

按位与:是时候登场了!

基本思路:

我们把权限分别用0001, 0010, 0100, 1000表示(即最通俗的1,2,4,8),如果admin用户有a, b, c, d四种权限,则admin的权限为 1 | 2 | 4 | 8 = 15,而guest用户权限为 4 | 8 = 12, 则判断用户是否有某种权限可以如下判断

admin & 4 === 4
admin & 8 === 8
admin & 2 === 2
admin & 1 === 1
  • 按位异或 ^

对于每一个比特位,当两个操作数相应的比特位有且只有一个1时,结果为1,否则为0。

其运算法则相当于不带进位的二进制加法

9 = 1 0 0 1
3 = 0 0 1 1
10 = 1 0 1 0

应用场景:

  1. 切换变量0和1

假如我们通过某个条件来切换一个值为0或者1

function update(toggle) {
num = toggle ? 1 : 0;
} update(true); // 通过异或我们可以这么写
num = num ^ 1;
  1. 交换两个变量的值(不用第三个变量)
let a = 5,
b = 6; a = a ^ b;
b = a ^ b;
a = a ^ b; // 还可以通过运算
a = a + b;
b = a - b;
a = a - b; // es 6
[a, b] = [b, a]

原理剖析:a = a ^ b; b = a ^ b 相当与 b = a ^ b ^ b = a ^ (b ^ b) = a ^ 0 = a;

  1. 简单字符串加密
  const key = 313;
function encryption(str) {
let s = '';
str.split('').map(item => {
s += handle(item);
})
return s;
} function decryption(str) {
let s = '';
str.split('').map(item => {
s += handle(item);
})
return s;
} function handle(str) {
if (/\d/.test(str)) {
return str ^ key;
} else {
let code = str.charCodeAt();
let newCode = code ^ key;
return String.fromCharCode(newCode);
}
} let init = 'hello world 位运算';
let result = encryption(init); // őŜŕŕŖęŎŖŋŕŝę乴軩窮
let decodeResult = decryption(result); // hello world 位运算

可以看到,我们利用字符串Unicode值的异或运算实现了一个简要的字符串加密效果。

ps: 上面代码仅为演示,实际解密时应该把key及解密密钥传进去。

  • 按位非 ~

对每一个比特位执行非(NOT)操作。NOT a 结果为 a 的反转(即反码)。

ps: 对任一数值 x 进行按位非操作的结果为 -(x + 1)。例如,~5 结果为 -6:

负数存储采用的形式是二进制补码。计算数字二进制补码的步骤有三步:

1.确定该数字的非负版本的二进制表示(例如,要计算 -18的二进制补码,首先要确定 18 的二进制表示)

2.求得二进制反码,即要把 0 替换为 1,把 1 替换为 0(相当于~操作)

3.在二进制反码上加 1

我们可以看到一个数a取负相当于 ~a + 1, 即 -a = ~a + 1, 因此~a = -(a + 1)

应用场景:

  1. 取整 (位运算花样取整)
~~(-5.88) // -5
  1. 判断数组中某项是否存在
// 常用判断
if (arr.indexOf(item) > -1) {
// code
}
// 按位非 ~-1 = - (-1 + 1)
if (~arr.indexOf(item)) {
// code
}

按位移动操作符

按位移动操作符有两个操作数:第一个是要被移动的数字,而第二个是要移动的长度。移动的方向根据操作符的不同而不同。

按位移动会先将操作数转换为大端字节序顺序(big-endian order)的32位整数,并返回与左操作数相同类型的结果。右操作数应小于 32位,否则只有最低 5 个字节会被使用。

  • 左移 <<

该操作符会将第一个操作数向左移动指定的位数。向左被移出的位被丢弃,右侧用 0 补充。

例如 3 << 2 的运算图示如下:

3 = 0000 0000 0000 0000 0000 0000 0000 0011

12 = 0000 0000 0000 0000 0000 0000 0000 1100

ps: 对任一数值 x 进行左移n, 相当于十进制里的乘以10的倍数,在这儿是指

x * 2^n

应用场景:

rgb和16进制颜色转换

首先我们需要知道RGB与十六进制之间的关系,例如我们最常见的白色RGB表示为rgb(255, 255, 255), 十六进制表示为#FFFFFFF, 我们可以把十六进制颜色除

‘#’外按两位分割成一部分,即FF,FF,FF, 看一下十六进制的FF转为十进制是多少呢?没错,就是255!

了解了十六进制和RGB关系之后,我们就会发现RGB转十六进制方法就很简单了

  1. 将RGB的3个数值分别转为十六进制数,然后拼接,即 rgb(255, 255, 255) => '#' + 'FF' + 'FF' + 'FF'。
  2. 巧妙利用左移,我们把十六进制数值部分当成一个整数,即FFFFFF,我们可以理解为FF0000 + FF00 + FF, 如同我们上面解释,如果左移是基于十六进制计算的,则可以理解为FF << 4, FF << 2, FF, 而实际上我们转为二进制则变为 FF << 16,如下:
x * 16^4  = x * 2 ^ 16

了解了原理以后,代码如下:

function RGBToHex(rgb){
// 取出rgb中的数值
let arr = rgb.match(/\d+/g);
if (!arr || arr.length !== 3) {
console.error('rgb数值不合法');
return
}
let hex = (arr[0]<<16 | arr[1]<<8 | arr[2]).toString(16);
// 自动补全第一位
if (hex.length < 6) {
hex = '0' + hex;
}
return `#${hex}`;
}
  • 有符号右移 >>

该操作符会将第一个操作数向右移动指定的位数。向右被移出的位被丢弃,拷贝最左侧的位以填充左侧。由于新的最左侧的位总是和以前相同,符号位没有被改变。所以被称作“符号传播”。

ps: 对任一数值 x 进行右移n, 相当于十进制里的除以10的倍数,在这里是指除以数之后取整

x / 2^n

应用场景:

十六进制转RGB

原理见上方RGB转十六进制

function hexToRGB(hex){
if (!/^#([0-9a-fA-F]{3}){1,2}$/.test(hex)) {
console.error('颜色不合法');
return
};
// #f00 转为 #ff0000
if (hex.length == 4) {
hex = hex.replace(/([0-9a-fA-F])/g, '$1$1');
};
let num = hex.replace('#', '0x');
let r = num >> 16;
// 0xff = 255
let g = num >> 8 & 0xff;
let b = num & 0xff;
return `rgb(${r},${g},${b})`;
}
  • 无符号右移 >>>

该操作符会将第一个操作数向右移动指定的位数。向右被移出的位被丢弃,左侧用0填充。因为符号位变成了 0,所以结果总是非负的。(译注:即便右移 0 个比特,结果也是非负的。)

题外话

想起之前小组内的一道算法题,题目是这样的:

1.一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法?

解题思路是:

/*因为n级台阶,第一步有n种跳法:跳1级、跳2级、到跳n级

跳1级,剩下n-1级,则剩下跳法是f(n-1)

跳2级,剩下n-2级,则剩下跳法是f(n-2)

所以f(n)=f(n-1)+f(n-2)+...+f(1)

那么f(n-1)=f(n-2)+f(n-3)+...+f(1)

所以算法为:

function jumpFloorII(number){
return 1<<(number-1);
}

WTF? 什么意思?

其实很简单,看下面过程

f(n)=f(n-1)+f(n-2)+...+f(1)

f(n-1)=f(n-2)+f(n-3)+...+f(1)

f(n) = 2*f(n-1) = 4 * f(n-2) = 8 * f(n-3) ..... = 2的(n-1)次方乘f(1),转为位运算即为 1 << (n - 1)

练习题:如何实现日历签到功能

  1. 怎么设计能使数据最少
  2. 每日签到应该怎么更新
  3. 怎么判断某天是否签到

ps: 码字不易,如果觉得本文对你有帮助,给个赞吧,哈哈哈~~

深入研究js中的位运算及用法的更多相关文章

  1. js中的位运算

    按位运算符是把操作数看作一系列单独的位,而不是一个数字值.所以在这之前,不得不提到什么是"位": 数值或字符在内存内都是被存储为0和 1的序列,每个0和1被称之为1个位,比如说10 ...

  2. PHP中的位运算与位移运算(其它语言通用)

    /* PHP中的位运算与位移运算 ======================= 二进制Binary:0,1 逢二进1,易于电子信号的传输 原码.反码.补码 二进制最高位是符号位:0为正数,1为负数( ...

  3. C语言中的位运算和逻辑运算

    这篇文章来自:http://blog.csdn.net/qp120291570/article/details/8708286 位运算 C语言中的位运算包括与(&),或(|),亦或(^),非( ...

  4. js中,三元运算的简单应用(?:)

    js中,三元运算的简单应用: var sinOrMul = ""; sinOrMul =(subType=="single")?("<span ...

  5. Google Earth Engine 中的位运算

    Google Earth Engine中的位运算 按位运算是编程中一个难点,同时也是在我们后续处理影像数据,尤其要使用影像自带的波段比如QA波段经常会用到的一个东西.通过按位运算我们可以筛选出我们想要 ...

  6. js中substring和substr的用法

    js中substring和substr的用法 substring 方法用于提取字符串中介于两个指定下标之间的字符 substring(start,end) 开始和结束的位置,从零开始的索引 参数    ...

  7. 第22篇 js中的this指针的用法

    前面把js的相关知识总结了下,今天把js中的上下文的this,对于强类型语言,this的用法非常的单一,因为他们没有js特有的动态绑定. 首先看下面代码: function funcA() { thi ...

  8. js中的this指针的用法

    首先看下面代码: function funcA() { this.name = "hello"; console.log(this.name); this.show = funct ...

  9. JS中的MOD运算

    最近研究汉诺塔非递归的时候,看到书上写了个MOD,久违啊,感觉好久没看到过了,都忘了怎么用了. 某人:我知道,这不就是取余嘛,直接%就行了. 嗯......,如果是python语言,你说的很对,但是我 ...

随机推荐

  1. Spring定时器StopWatch

    简单总结一句,Spring提供的计时器StopWatch对于秒.毫秒为单位方便计时的程序,尤其是单线程.顺序执行程序的时间特性的统计输出支持比较好.也就是说假如我们手里面有几个在顺序上前后执行的几个任 ...

  2. ReentrantLock的相关方法使用

    获取锁定 void lock():常用获取锁定的方法 void lockInterruptibly():如果当前线程未被中断,则获取锁定:如果当前线程被中断,则出现异常 boolean tryLock ...

  3. Invoke-Obfuscation混淆ps文件绕过Windows_Defender

    前提 powershell只能针对win7之后的系统,之前的win操作系统默认没有安装powershell. 所在目录:C:\Windows\System32\WindowsPowerShell\v1 ...

  4. Pyhton第八节 字典补充

    Python 字典的基本元素是键值对(key-value), 每个键值对的key和value之间用:分割:每个键值对之间用,分割:整个键值对用花括号{}包围 字典内的键(key)必须唯一,值不需要唯一 ...

  5. CSS 中 transform、animation、transition、translate的区别

    在前端页面的开发过程中,经常会碰到这么几个 CSS 属性容易搞混:transform.translate.animation还有transition.下面就针对这几个 CSS 属性做一个对比,辨别这几 ...

  6. elasticsearch启动问题

    ES安装完一直启动不了,问题解决. 报错: ERROR: bootstrap checks failed system call filters failed to install; check th ...

  7. codeforces 1B 模拟

    题目大意: 给出两种行列位置的表示方法,一个是Excel表示法,一个是(R,C)坐标表示.给出一种表示,输出另外一种表示. 基本思路: 模拟,首先判断是哪一种表示法,然后转换成另外一种表示方法: 我做 ...

  8. 当我们在Java中新建一个对象的时候发生了什么?

  9. 【书上讲解】最大m段子段和问题

    描述 [题解] 设f[i][j]表示前i个数字分成了j段的最大子段和. 则f[i][j] = max(f[i-1][j]+a[i] (第i个数字和第j段合在一起),f[k][j-1]+a[i] (第i ...

  10. 排序+模拟+优先队列——cf1248E

    其实是个模拟题.. /* 每个人都有一个口渴时间,如果口渴时,其前面没有人在排队,那么其就去排队接水,反之一直等到前面没有人排队 问每个人接完水的时间 每个没轮到的人都在位置上等前面的人接完水,然后他 ...