Burnside引理:

参考自 某大佬对Burnside引理和Polya定理的讲解

相关概念

  1. 群:在数学中,群表示一个拥有满足封闭性、满足结合律、有单位元、有逆元的二元运算的代数结构。
  2. 置换群:由有限集合各元素的置换所构成的群。

一个置换的形式类似于

然后是Burnside引理:

(1)玄学描述

在一个置换群G={a1,a2,a3……ak}中,把每个置换都写成不相交循环的乘积。

设C1(ak)是在置换ak的作用下不动点的个数,也就是长度为1的循环的个数。

通过上述置换的变换操作后可以相等的元素属于同一个等价类

那么等价类的个数就等于:

即置换群中每个置换的不动点的平均数

(2)对公式的理解

eg:一正方形分成4格,2着色,有多少种方案?其中,经过转动相同的图象算同一方案。

关于转动,一共有四种置换方法,也就是|G|=4

不动(360度):a1=(1)(2)…(16)

逆时针转90度 :a2=(1)(2)(3 4 5 6)(7 8 9 10) (11 12)(13 14 15 16)

顺时针转90度 :a3=(1)(2)(6 5 4 3)(10 9 8 7)(11 12)(16 15 14 13)

转180度:a4=(1)(2)(3 5)(4 6)(7 9)(8 10)(11)(12) (13 15)(14 16)

对括号的理解: 假设转动方式(不动、逆时针转90度、顺时针转90度、转180度)为运算符+。 则+表示逆时针转90度时,括号(3 4 5 6)表示(3+4+5+6+)为一个循环,即(3+4+5+6+)=3(回到原点);

然后我们针对每一种置换的方式,找到其中的不动点,也就是只有自己的情况

由Burnside引理,共有(16+2+2+4)/4=6(种方案)

关于Burnside引理的证明

Polya定理

再提一提那个我不懂的Polya定理吧(哪天懂了回来解释)

国家集训队2001论文集 符文杰 Polya原理及其应用

Polya定理实际上是Burnside引理的具体化,提供了计算不动点的具体方法:

假设一个置换有σk">σk个循环,就是轮换

易知每个循环对应的所有位置颜色需一致,而任意两个循环之间选什么颜色互不影响。

因此,如果有m种可选颜色,则该置换对应的不动点个数为mσk">m^σk。

用其替换Burnside引理中的C(G)">C(G),即C(G)=mk">C(G)=m^k。得到等价类数目为:

现在借这道题学会运用Burnside引理

[HNOI2008]Cards(luogu)

  • Description

题目描述

小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.

进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绿色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.

Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

输入格式

第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种

洗牌法,都存在一种洗牌法使得能回到原状态。

100%数据满足 Max{Sr,Sb,Sg}<=20。

输出格式

不同染法除以P的余数

  • Solution

运用01背包求出每一种置换(注意不动也是一种置换)的不动点个数,再运用Burnside引理求出等价类个数

  • Code
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define ll long long
using namespace std;
int s1,s2,s3,m,a[][],size[],tot,n;
ll p,f[][][],ans;
bool vis[];
ll ksm(ll a,int b)//快速幂求逆元
{
ll x=a,ans=;
while(b)
{
if(b&) ans=(ans*x)%p;
x=(x*x)%p,b>>=;
}
return ans;
}
ll Dp(int x)//01背包
{
memset(vis,false,sizeof(vis));
memset(f,,sizeof(f));
tot=;
for(int i=;i<=n;i++)
if(!vis[i])
{
vis[i]=true,size[++tot]=;
int p=i;
while(!vis[a[x][p]]) vis[p=a[x][p]]=true,size[tot]++;
}
f[][][]=;
for(int i=;i<=tot;i++)
for(int j1=s1;j1>=;j1--)
for(int j2=s2;j2>=;j2--)
for(int j3=s3;j3>=;j3--)
{
if(j1>=size[i]) f[j1][j2][j3]=(f[j1][j2][j3]+f[j1-size[i]][j2][j3])%p;
if(j2>=size[i]) f[j1][j2][j3]=(f[j1][j2][j3]+f[j1][j2-size[i]][j3])%p;
if(j3>=size[i]) f[j1][j2][j3]=(f[j1][j2][j3]+f[j1][j2][j3-size[i]])%p;
}
return f[s1][s2][s3];
}
int main()
{
scanf("%d%d%d%d%lld",&s1,&s2,&s3,&m,&p);
n=s1+s2+s3;
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
scanf("%d",&a[i][j]);
m++;
for(int i=;i<=n;i++) a[m][i]=i;
for(int i=;i<=m;i++)
ans=(ans+Dp(i))%p;//Burnside引理
printf("%lld\n",ans*ksm((long long)m,p-)%p);
return ;
}

[HNOI2008]Cards(dp,Burnside引理)的更多相关文章

  1. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  2. [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】

    题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...

  3. [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  4. BZOJ 1004 Cards(Burnside引理+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...

  5. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  6. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  7. BZOJ1004 [HNOI2008]Cards 【burnside定理 + 01背包】

    题目链接 BZOJ1004 题解 burnside定理 在\(m\)个置换下本质不同的染色方案数,等于每种置换下不变的方案数的平均数 记\(L\)为本质不同的染色方案数,\(m\)为置换数,\(f(i ...

  8. bzoj1004 [HNOI2008]Cards【Burnside/Polya】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 一道好题,但并不是好在融合了三个“考点”(计数,背包dp,逆元),其实背包dp以及求逆 ...

  9. 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP

    题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...

随机推荐

  1. Memcahced 缓存过期时间问题

    转载:https://help.aliyun.com/knowledge_detail/38654.html 关于设置缓存数据的过期时间,可以参考以下Memcached官方说明: An expirat ...

  2. ASP.NET MVC API与JS进行POST请求时传递参数 -CHPowerljp原创

    在API前添加    [HttpPost] 表示只允许POST方式请求 [HttpPost] public IHttpActionResult Get_BIGDATA([FromBody]Datas  ...

  3. WPF继续响应被标记为已处理事件的方法

    WPF继续响应被标记为已处理事件的方法 WPF中在冒泡事件或者隧道事件会随其层间关系在visual tree上层层传递,但是,某些事件传递到某些控件是即会”终止“(不再响应相应的注册事件),给人一种事 ...

  4. $Poj1037\ A\ Decorative\ Fence$ 计数类$DP$

    Poj  AcWing Description Sol 这题很数位$DP$啊, 预处理$+$试填法 $F[i][j][k]$表示用$i$块长度不同的木板,当前木板(第$i$块)在这$i$块木板中从小到 ...

  5. antDeaign-form-getFieldDecorator 使用注意事项

    2020-01-06 antDeaign-form-getFieldDecorator 使用注意事项 一.使用getFieldDecorator之前,必须先使用 Form.create({ })(Fo ...

  6. 【DDD】持久化领域对象的方法实践

    [toc] 概述 在实践领域驱动设计(DDD)的过程中,我们会根据项目的所在领域以及需求情况捕获出一定数量的领域对象.设计得足够好的领域对象便于我们更加透彻的理解业务,方便系统后期的扩展和维护,不至于 ...

  7. Bandicam(班迪录屏)高清视频录制工具

    Bandicam(班迪录屏)简单好用的录屏幕,录游戏,录视频的功能强大的屏幕录像软件,比起其他软件其性能更加卓越. 与其他软件相比,用Bandicam录制的视频大小更小, 不仅保证原文件的质量.

  8. jupyter启动后,浏览器自动打开,但是显示空白

    解决办法 1.在Windows菜单中,搜索regedit,打开它.2.导航到计算机> HKEY_CLASSES_ROOT> .js> Content Type(如果没找到需要新建或直 ...

  9. 移动web 1像素边框

    实现方法 border-image 图片 实现 这篇文章是腾讯github上的解决方案border-image来实现的 链接走起 <使用border-image实现类似iOS7的1px底边> ...

  10. 基于Arduino的红外遥控

    1.红外接收头介绍  一.什么是红外接收头?  红外遥控器发出的信号是一连串的二进制脉冲码.为了使其在无线传输过程中免受其他红外信号的干扰,通常都是先将其调制在特定的载波频率上,然后再经红外发射二极管 ...