A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang
Purpose:
characterize the evolution of dynamical systems. In this paper, a novel method based on epsilon-recurrence networks is proposed for the study of the evolution properties of dynamical systems.
Methodology:
1. convert time series to a high-dimensional recurrence network and a corresponding low-dimensional recurrence network.
network dimension L represents the number of state vectors that form a node in the network.
phase space reconstruction based on Takens' embedding theorem. -----------> a series of state vectors R1, R2, ..., Rn` can be obtained. ----------------> construct a high dimensional recurrence network (RN) and a low dimensional RN. 每个结点代表着a segment of the phase space trajectory. distance matrix Dl between nodes can be obtained by equation 2, which reflects the distance between segments of the phase space trajectories. ---------> obtain the adjacency matrix.
The construction of the network is highly dependent on the threshold, , which should be tailored to specific questions that need to be solved. --------------> choose a fixed link density.
Therefore, the similarity between the two networks can reflect the evolution properties of the studied dynamical systems. ?why?
?? 结果不明白.
Basic knowledge:
1. phase space 相空间重构
如果把一个时间序列看成是由一个确定性的非线性动力系统产生的, 要考虑的是以下反问题: 如何有时间序列来恢复并刻画原动力系统.
The fundamental starting point of many approaches in nonlinear data analysis is the construction of a phase space portrait of the considered system. The state of a system can be described by its state variables $x^1(t), x^2(t), ... ,x^d(t)$, for example the both state variables temperature and pressure for a thermodynamic system. The d state variables at time t form a vector in a d-dimensional space which is called phase space. The state of a system typically changes in time, and, hence, the vector in the phase space describes a trajectory representing the time evolution, the dynamics, of the system. The shape of the trajectory gives hints about the system; periodic or chaotic systems have characteristic phase space portraits.
The observation of a real process usually does not yield all possible state variables. Either not all state variables are known or not all of them can be measured. However, due to the couplings between the system's components, we can reconstruct a phase space trajectory from a single observation u_i by a time delay embedding (Takens, 1981): 由时间序列恢复原系统最常用的方法是利用Takens的延迟嵌入定理.
where $m$ is the embedding dimension and $\tau$ is the time delay (index based; the real time delay is $\tau\,\Delta t$). This reconstruction of the phase space is called time delay embedding. The phase space reconstruction is not exactly the same to the original phase space, but its topological properties are preserved, if the embedding dimension is large enough (the embedding dimension has to be larger then twice the phase space dimension, or exactly m > 2 d + 1). And this reconstructed trajectory is sufficient enough for a subsequent analysis.
Now we look at the phase space portrait of an harmonic oscillation, like an undamped pendulum. First we create the position vector y1 and the velocity vector y2
x = 0 : pi/10 : 6 * pi;
y1 = sin(x);
y2 = cos(x);
The phase space portrait
plot(y1, y2)
xlabel('y_1'), ylabel('y_2')
2. 非线性时间序列预测.
基本方法:
局域预测法: 局部平均预测法, 局部线性预测法,局部多项式预测法.
全局预测法: 神经网络, 小波网络, 遗传算法.
A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang的更多相关文章
- PP: Multilevel wavelet decomposition network for interpretable time series analysis
Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...
- (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are th ...
- (zhuan) LSTM Neural Network for Time Series Prediction
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...
- 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05 11:13:05 ...
- DeepCoder: A Deep Neural Network Based Video Compression
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测 ...
- 论文笔记:(CVPR2019)Relation-Shape Convolutional Neural Network for Point Cloud Analysis
目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性 ...
- 论文翻译:2019_Deep Neural Network Based Regression Approach for A coustic Echo Cancellation
论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器 ...
- 论文翻译:2020_Generative Adversarial Network based Acoustic Echo Cancellation
论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-5.pdf 基于GAN的回声消除 摘要 生成对抗网络(GANs)已成为语音增强( ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
随机推荐
- jQuery---委托事件原理
jQuery事件发展历程 事件发展历程:从简单事件,到bind,到委托事件,到on事件绑定 //简单事件,给自己注册的事件 $("div").click(function () { ...
- Android一个简单的自定义对话框制作
布局文件 <?xml version="1.0" encoding="utf-8"?> <TableLayout xmlns:android= ...
- KVM命令--优化篇(2)
1- 为什么要调优 ___ KVM采用全虚拟化技术,全虚拟化要由一个软件来模拟硬件,故有一定的损耗,特别是I/O,因此需要优化. ___ KVM性能优化主要在CPU.内存.I/O这几方面.当然对于这几 ...
- mac电脑怎么投屏?教你选择适合自己的Mac投屏软件
mac上有什么好的投屏软件嘛?苹果手机ios投屏到mac用哪款投屏软件,mac投屏ipad该用哪款软件怎么操作,macdown小编给大家介绍的这几款Mac投屏软件,各有各的特色,总有一款适合你投屏. ...
- GUI之JavaFX
一.JavaFX不深究系列,目的只是为了尝试使用GUI的方式来生成桌面应用. 二.JavaFX是一个强大的图形和多媒体处理工具包集合,它允许开发者来设计.创建.测试.调试和部署富客户端程序,并且和Ja ...
- pycharm out of memory 闪退
不知道从什么时候开始,python开始报 out of memory. 把pycharm64.exe.vmoptions -Xmx 调成1024m或者2048m pycharm就打不开了 低了不能用, ...
- ubuntu--- tracker/libdeepsort.so 找不到cv报错
一.刚开始解决尝试:因为“删掉lib下的libdeepsort.so报错”,原先以为是 libdeepsort.so 需要拷贝到 /lib路径下的问题,可是因为后来的工程有的好使,又的不好使了.''' ...
- Python3中的支持向量机SVM的使用(有实例)
https://www.cnblogs.com/luyaoblog/p/6775342.html 首先,我们需要安装scikit-learn 一.导入sklearn算法包 在python中导入sci ...
- windows下XAMPP集成环境中,MySQL数据库的使用
https://jingyan.baidu.com/article/d169e186467a44436611d8b1.html
- 【学习笔记】:一天搞定HTML
PS:许多控制样式的标签在HTML5中都不推荐使用,建议使用CSS,如align,border等. 一.概念 HTML的英文全称:Hypertext Marked Language 超文本标记语言. ...