Purpose:

characterize the evolution of dynamical systems. In this paper, a novel method based on epsilon-recurrence networks is proposed for the study of the evolution properties of dynamical systems.

Methodology:

1. convert time series to a high-dimensional recurrence network and a corresponding low-dimensional recurrence network.

network dimension L  represents the number of state vectors that form a node in the network.

phase space reconstruction based on Takens' embedding theorem. -----------> a series of state vectors R1, R2, ..., Rn` can be obtained. ----------------> construct a high dimensional recurrence network (RN) and a low dimensional RN.  每个结点代表着a segment of the phase space trajectory. distance matrix Dl between nodes can be obtained by equation 2, which reflects the distance between segments of the phase space trajectories.  ---------> obtain the adjacency matrix.

The construction of the network is highly dependent on the threshold,  , which should be tailored to specific questions that need to be solved. --------------> choose a fixed link density.

Therefore, the similarity between the two networks can reflect the evolution properties of the studied dynamical systems. ?why?

?? 结果不明白.

Basic knowledge:

1. phase space  相空间重构

如果把一个时间序列看成是由一个确定性的非线性动力系统产生的, 要考虑的是以下反问题: 如何有时间序列来恢复并刻画原动力系统.

The fundamental starting point of many approaches in nonlinear data analysis is the construction of a phase space portrait of the considered system. The state of a system can be described by its state variables $x^1(t), x^2(t), ... ,x^d(t)$, for example the both state variables temperature and pressure for a thermodynamic system. The d state variables at time t form a vector in a d-dimensional space which is called phase space. The state of a system typically changes in time, and, hence, the vector in the phase space describes a trajectory representing the time evolution, the dynamics, of the system. The shape of the trajectory gives hints about the system; periodic or chaotic systems have characteristic phase space portraits.

The observation of a real process usually does not yield all possible state variables. Either not all state variables are known or not all of them can be measured. However, due to the couplings between the system's components, we can reconstruct a phase space trajectory from a single observation u_i by a time delay embedding (Takens, 1981): 由时间序列恢复原系统最常用的方法是利用Takens的延迟嵌入定理.

where $m$ is the embedding dimension and $\tau$ is the time delay (index based; the real time delay is $\tau\,\Delta t$). This reconstruction of the phase space is called time delay embedding. The phase space reconstruction is not exactly the same to the original phase space, but its topological properties are preserved, if the embedding dimension is large enough (the embedding dimension has to be larger then twice the phase space dimension, or exactly m > 2 d + 1). And this reconstructed trajectory is sufficient enough for a subsequent analysis.

Now we look at the phase space portrait of an harmonic oscillation, like an undamped pendulum. First we create the position vector y1 and the velocity vector y2

x = 0 : pi/10 : 6 * pi;
y1 = sin(x);
y2 = cos(x);

The phase space portrait

plot(y1, y2)
xlabel('y_1'), ylabel('y_2')

2. 非线性时间序列预测.

基本方法:

局域预测法: 局部平均预测法, 局部线性预测法,局部多项式预测法.

全局预测法: 神经网络, 小波网络, 遗传算法.

from

A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang的更多相关文章

  1. PP: Multilevel wavelet decomposition network for interpretable time series analysis

    Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...

  2. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

  3. (zhuan) LSTM Neural Network for Time Series Prediction

    LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...

  4. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

  5. DeepCoder: A Deep Neural Network Based Video Compression

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测 ...

  6. 论文笔记:(CVPR2019)Relation-Shape Convolutional Neural Network for Point Cloud Analysis

    目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性 ...

  7. 论文翻译:2019_Deep Neural Network Based Regression Approach for A coustic Echo Cancellation

    论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器 ...

  8. 论文翻译:2020_Generative Adversarial Network based Acoustic Echo Cancellation

    论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-5.pdf 基于GAN的回声消除 摘要 生成对抗网络(GANs)已成为语音增强( ...

  9. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

随机推荐

  1. Django---Django连接Mysql数据库

    前面介绍了Django平台的数据交互,这些数据都是在本地存放着,修改内容或者重新启动服务,数据就消失了,如果我们把数据存放在数据库中,不就保存了吗? Django数据库 Django中自带的也有数据库 ...

  2. opencv —— copyMakeBorder 扩充图像边界

    扩充图像边界:copyMakeBorder 函数 在图像处理过程中,因为卷积算子有一定大小,所以就会导致图像一定范围的边界不能被处理,这时就需要将边界进行适当扩充. void copyMakeBord ...

  3. Postman实现文件下载功能测试

    背景 实现一个模板下载的功能,然后想用postman进行文件下载的功能测试 实现 然后会弹出下载框 tips:我第一次点的时候,没有任何反应,以为是卡死了,后来发现是弹出的下载框在postman框下面 ...

  4. ES读写数据过程及原理

    ES读写数据过程及原理 倒排索引 首先来了解一下什么是倒排索引 倒排索引,就是建立词语与文档的对应关系(词语在什么文档出现,出现了多少次,在什么位置出现) 搜索的时候,根据搜索关键词,直接在索引中找到 ...

  5. Linux系统之网络相关的命令

    Linux系统之网络相关的命令 网络概述 网络:通过通信介质和通信设备 将分布不同地点的两台或多台计算机,经过相应的程序实现通信switch 交换机router 路由器网络的功能:数据通信:利用网络传 ...

  6. Docker容器Centos不能使用systemctl命令问题

    注:本文出自博主 Chloneda:个人博客 | 博客园 | Github | Gitee | 知乎 本文源链接:https://www.cnblogs.com/chloneda/p/bug-dock ...

  7. Pikachu-XXE(xml外部实体注入漏洞)

    XXE -"xml external entity injection"既"xml外部实体注入漏洞".概括一下就是"攻击者通过向服务器注入指定的xml ...

  8. Python语法速查: 14. 测试与调优

    返回目录 本篇索引 (1)测试的基本概念 (2)doctest模块 (3)unittest模块 (4)调试器和pdb模块 (5)程序探查 (6)调优与优化 (1)测试的基本概念 对程序的各个部分建立测 ...

  9. Error: cannot fetch last explain plan from PLAN_TABLE

    最近遇到了错误"Error: cannot fetch last explain plan from PLAN_TABLE",于是稍微研究了一下哪些场景下碰到这种错误,具体参考下面 ...

  10. PAT (Advanced Level) Practice 1019 General Palindromic Number (20 分) (进制转换,回文数)

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Nu ...