Purpose:

characterize the evolution of dynamical systems. In this paper, a novel method based on epsilon-recurrence networks is proposed for the study of the evolution properties of dynamical systems.

Methodology:

1. convert time series to a high-dimensional recurrence network and a corresponding low-dimensional recurrence network.

network dimension L  represents the number of state vectors that form a node in the network.

phase space reconstruction based on Takens' embedding theorem. -----------> a series of state vectors R1, R2, ..., Rn` can be obtained. ----------------> construct a high dimensional recurrence network (RN) and a low dimensional RN.  每个结点代表着a segment of the phase space trajectory. distance matrix Dl between nodes can be obtained by equation 2, which reflects the distance between segments of the phase space trajectories.  ---------> obtain the adjacency matrix.

The construction of the network is highly dependent on the threshold,  , which should be tailored to specific questions that need to be solved. --------------> choose a fixed link density.

Therefore, the similarity between the two networks can reflect the evolution properties of the studied dynamical systems. ?why?

?? 结果不明白.

Basic knowledge:

1. phase space  相空间重构

如果把一个时间序列看成是由一个确定性的非线性动力系统产生的, 要考虑的是以下反问题: 如何有时间序列来恢复并刻画原动力系统.

The fundamental starting point of many approaches in nonlinear data analysis is the construction of a phase space portrait of the considered system. The state of a system can be described by its state variables $x^1(t), x^2(t), ... ,x^d(t)$, for example the both state variables temperature and pressure for a thermodynamic system. The d state variables at time t form a vector in a d-dimensional space which is called phase space. The state of a system typically changes in time, and, hence, the vector in the phase space describes a trajectory representing the time evolution, the dynamics, of the system. The shape of the trajectory gives hints about the system; periodic or chaotic systems have characteristic phase space portraits.

The observation of a real process usually does not yield all possible state variables. Either not all state variables are known or not all of them can be measured. However, due to the couplings between the system's components, we can reconstruct a phase space trajectory from a single observation u_i by a time delay embedding (Takens, 1981): 由时间序列恢复原系统最常用的方法是利用Takens的延迟嵌入定理.

where $m$ is the embedding dimension and $\tau$ is the time delay (index based; the real time delay is $\tau\,\Delta t$). This reconstruction of the phase space is called time delay embedding. The phase space reconstruction is not exactly the same to the original phase space, but its topological properties are preserved, if the embedding dimension is large enough (the embedding dimension has to be larger then twice the phase space dimension, or exactly m > 2 d + 1). And this reconstructed trajectory is sufficient enough for a subsequent analysis.

Now we look at the phase space portrait of an harmonic oscillation, like an undamped pendulum. First we create the position vector y1 and the velocity vector y2

x = 0 : pi/10 : 6 * pi;
y1 = sin(x);
y2 = cos(x);

The phase space portrait

plot(y1, y2)
xlabel('y_1'), ylabel('y_2')

2. 非线性时间序列预测.

基本方法:

局域预测法: 局部平均预测法, 局部线性预测法,局部多项式预测法.

全局预测法: 神经网络, 小波网络, 遗传算法.

from

A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang的更多相关文章

  1. PP: Multilevel wavelet decomposition network for interpretable time series analysis

    Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...

  2. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

  3. (zhuan) LSTM Neural Network for Time Series Prediction

    LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...

  4. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

  5. DeepCoder: A Deep Neural Network Based Video Compression

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测 ...

  6. 论文笔记:(CVPR2019)Relation-Shape Convolutional Neural Network for Point Cloud Analysis

    目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性 ...

  7. 论文翻译:2019_Deep Neural Network Based Regression Approach for A coustic Echo Cancellation

    论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器 ...

  8. 论文翻译:2020_Generative Adversarial Network based Acoustic Echo Cancellation

    论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-5.pdf 基于GAN的回声消除 摘要 生成对抗网络(GANs)已成为语音增强( ...

  9. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

随机推荐

  1. MySql -- check 约束

    6.CHECK 约束:用于限制列中的值的范围 在一些情况下,我们需要字段在指定范围的输入,例如:性别只能输入 '男'或者'女',余额只能大于0等条件,我们除了在程序上控制以外,我们还能使用 CHECK ...

  2. docker - apt-get更换国内源解决Dockerfile构建速度过慢

    背景 使用ubuntu镜像一般apt-get源地址都是在国外导致在构建时因为源地址问题导致下载速度极其得慢 在构建中应事先修改apt-get源地址来避免因下载速度过慢导致的构建缓慢问题 方案 在Doc ...

  3. 剑指offer-面试题41-数据流中的中位数-堆

    /* 题目: 链接:https://www.nowcoder.com/questionTerminal/9be0172896bd43948f8a32fb954e1be1 来源:牛客网 如何得到一个数据 ...

  4. tensorflow 中的L1和L2正则化

    import tensorflow as tf weights = tf.constant([[1.0, -2.0],[-3.0 , 4.0]]) >>> sess.run(tf.c ...

  5. 【剑指Offer】59:对称的二叉树

    题目描述 请实现一个函数,用来判断一颗二叉树是不是对称的.注意,如果一个二叉树同此二叉树的镜像是同样的,定义其为对称的. 题解:递归 public static boolean isSymmetric ...

  6. 吴裕雄--天生自然HADOOP操作实验学习笔记:hbase的javaAPI应用

    实验目的 进一步了解hbase的操作 熟悉使用IDEA进行java开发 熟悉hbase的javaAPI 实验原理 前面已经了解通过hbase的shell操作hbase,确实比较难以使用,另外通过hiv ...

  7. 10、初识constexpr和常量表达式

    常量表达式:是指值不会改变并且在编译过程就能得到计算结果的表达式.显然字面值属于常量表达式,用于表达式初始化的const对象也是常量表达式. 1.判断一个变量是不是常量表达式 一个对象(表达式)是不是 ...

  8. Linux中为什么执行自己的程序要在前面加./

    前言   在Linux中,我们执行内置命令时,直接输入命令名称即可,如: $ mv a b #将a重命名为b   而在执行自己写好的程序时,却要带上./,例如: $ hello hello: comm ...

  9. C#排序算法的实现---选择排序

    一.算法原理 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完. 选择排序算法的运作如下: 1.对比数组中前一个元素跟后一个元素的大小 ...

  10. PAT (Basic Level) Practice (中文)1087 有多少不同的值 (20 分) (set)

    当自然数 n 依次取 1.2.3.…….N 时,算式 ⌊ 有多少个不同的值?(注:⌊ 为取整函数,表示不超过 x 的最大自然数,即 x 的整数部分.) 输入格式: 输入给出一个正整数 N(2). 输出 ...