A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang
Purpose:
characterize the evolution of dynamical systems. In this paper, a novel method based on epsilon-recurrence networks is proposed for the study of the evolution properties of dynamical systems.
Methodology:
1. convert time series to a high-dimensional recurrence network and a corresponding low-dimensional recurrence network.
network dimension L represents the number of state vectors that form a node in the network.
phase space reconstruction based on Takens' embedding theorem. -----------> a series of state vectors R1, R2, ..., Rn` can be obtained. ----------------> construct a high dimensional recurrence network (RN) and a low dimensional RN. 每个结点代表着a segment of the phase space trajectory. distance matrix Dl between nodes can be obtained by equation 2, which reflects the distance between segments of the phase space trajectories. ---------> obtain the adjacency matrix.
The construction of the network is highly dependent on the threshold,  , which should be tailored to specific questions that need to be solved. --------------> choose a fixed link density.
Therefore, the similarity between the two networks can reflect the evolution properties of the studied dynamical systems. ?why?
?? 结果不明白.
Basic knowledge:
1. phase space 相空间重构
如果把一个时间序列看成是由一个确定性的非线性动力系统产生的, 要考虑的是以下反问题: 如何有时间序列来恢复并刻画原动力系统.
The fundamental starting point of many approaches in nonlinear data analysis is the construction of a phase space portrait of the considered system. The state of a system can be described by its state variables $x^1(t), x^2(t), ... ,x^d(t)$, for example the both state variables temperature and pressure for a thermodynamic system. The d state variables at time t form a vector in a d-dimensional space which is called phase space. The state of a system typically changes in time, and, hence, the vector in the phase space describes a trajectory representing the time evolution, the dynamics, of the system. The shape of the trajectory gives hints about the system; periodic or chaotic systems have characteristic phase space portraits.
The observation of a real process usually does not yield all possible state variables. Either not all state variables are known or not all of them can be measured. However, due to the couplings between the system's components, we can reconstruct a phase space trajectory from a single observation u_i by a time delay embedding (Takens, 1981): 由时间序列恢复原系统最常用的方法是利用Takens的延迟嵌入定理.
where $m$ is the embedding dimension and $\tau$ is the time delay (index based; the real time delay is $\tau\,\Delta t$). This reconstruction of the phase space is called time delay embedding. The phase space reconstruction is not exactly the same to the original phase space, but its topological properties are preserved, if the embedding dimension is large enough (the embedding dimension has to be larger then twice the phase space dimension, or exactly m > 2 d + 1). And this reconstructed trajectory is sufficient enough for a subsequent analysis.
Now we look at the phase space portrait of an harmonic oscillation, like an undamped pendulum. First we create the position vector y1 and the velocity vector y2
x = 0 : pi/10 : 6 * pi;
y1 = sin(x);
y2 = cos(x);
The phase space portrait
plot(y1, y2)
xlabel('y_1'), ylabel('y_2')
2. 非线性时间序列预测.
基本方法:
局域预测法: 局部平均预测法, 局部线性预测法,局部多项式预测法.
全局预测法: 神经网络, 小波网络, 遗传算法.
A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang的更多相关文章
- PP: Multilevel wavelet decomposition network for interpretable time series analysis
		
Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...
 - (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION
		
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are th ...
 - (zhuan) LSTM Neural Network for Time Series Prediction
		
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...
 - 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks
		
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05 11:13:05 ...
 - DeepCoder: A Deep Neural Network Based Video Compression
		
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测 ...
 - 论文笔记:(CVPR2019)Relation-Shape Convolutional Neural Network for Point Cloud Analysis
		
目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性 ...
 - 论文翻译:2019_Deep Neural Network Based Regression Approach for  A coustic Echo Cancellation
		
论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器 ...
 - 论文翻译:2020_Generative Adversarial Network based Acoustic Echo Cancellation
		
论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-5.pdf 基于GAN的回声消除 摘要 生成对抗网络(GANs)已成为语音增强( ...
 - PP: A dual-stage attention-based recurrent neural network for time series prediction
		
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
 
随机推荐
- springboot打成war包并携带第三方jar包
			
1.修改打包方式为war <packaging>war</packaging> 2.添加第三方依赖的jar到pom 我的第三方jar包在resoueces目录下 ...
 - 安装SSDB注意事项
			
遇到的问题 安装SSDB时 make编译失败 wget --no-check-certificate https://github.com/ideawu/ssdb/archive/master.zip ...
 - 洛谷P4526 【模板】自适应辛普森法2
			
P4526 [模板]自适应辛普森法2 洛谷传送门 题目描述 计算积分 保留至小数点后5位.若积分发散,请输出"orz". 输入格式 一行,包含一个实数,为a的值 输出格式 一行,积 ...
 - BZOJ #5457: 城市 [线段树合并]
			
线段树合并的板子题,每次从下到上合并就完事了 // by Isaunoya #include <bits/stdc++.h> using namespace std; #define re ...
 - 【MySql】数据库连接异常:Thelastpacketsentsuccessfullytotheserverwas0millisecondsago
			
参考链接:http://blog.sina.com.cn/s/blog_7540bf5f0102xjpk.html 最近新入职,用了新版的mysql8数据库,结果连接数据库时出现了问题,报了几个异常, ...
 - Pikachu-Sql Inject(SQL注入)
			
在owasp发布的top10排行榜里,注入漏洞一直是危害排名第一的漏洞,其中注入漏洞里面首当其冲的就是数据库注入漏洞.一个严重的SQL注入漏洞,可能会直接导致一家公司破产!SQL注入漏洞主要形成的原因 ...
 - java遍历统计一个文件夹中所有文件单词出现次数
			
思路就是通过递归进行文件遍历,把所有文件夹中的非目录文件都遍历一遍,并判断其中读取到的字符串是不是单词,并对单词进行记录和计数,并在最后进行排序输出,下面是代码: package word; impo ...
 - 积分题1之来自G.Han的一道积分题
			
今天,收到G.Han的提问,第一个是计算积分 \[\int_0^{\infty}{\frac{\ln x}{(x^2+1)^n}dx}\]顿时不明觉厉,然后在宝典<Table of Integr ...
 - 《你不知道的javascript(上)》笔记
			
作用域是什么 编译原理 分词/词法分析 这个过程会将由字符组成的字符串分解成(对编程语言来说)有意义的代码块,这些代码块被称为词法单元 解析/语法分析 词法单元流(数组)转换成一个由元素逐级嵌套所组成 ...
 - C#中怎样获取System.Drawing.Color的所有颜色对象并存到数组中
			
场景 需要在生成一组多条曲线时,随机从一颜色数组中取颜色,至少一百种颜色以上. 而System.Drawing.Color自带140多种颜色 那么怎样将其自带的颜色对象取出并存在数组中. 注: 博客主 ...