使用TensorFlow训练模型的基本流程
本文已在公众号
机器视觉与算法建模发布,转载请联系我。
使用TensorFlow的基本流程
本篇文章将介绍使用tensorflow的训练模型的基本流程,包括制作读取TFRecord,训练和保存模型,读取模型。
准备
- 语言:Python3
- 库:tensorflow、cv2、numpy、matplotlib
- 数据集:Chars74K dataset 的数字部分
- 网络:CNN
 所有代码已经上传至github:https://github.com/wmpscc/TensorflowBaseDemo
TFRecord
TensorFlow提供了一种统一的格式来存储数据,这个格式就是TFRecord.
message Example {
 Features features = 1;
};  
message Features{
 map<string,Feature> featrue = 1;
};  
message Feature{
    oneof kind{
        BytesList bytes_list = 1;
        FloatList float_list = 2;
        Int64List int64_list = 3;
    }
};
从代码中我们可以看到, tf.train.Example 包含了一个字典,它的键是一个字符串,值为Feature,Feature可以取值为字符串(BytesList)、浮点数列表(FloatList)、整型数列表(Int64List)。
写入一个TFRecord一般分为三步:
- 读取需要转化的数据
- 将数据转化为Example Protocol Buffer,并写入这个数据结构
- 通过将数据转化为字符串后,通过TFRecordWriter写出
方法一
这次我们的数据是分别保存在多个文件夹下的,因此读取数据最直接的方法是遍历目录下所有文件,然后读入写出TFRecord文件。该方法对应文件MakeTFRecord.py,我们来看关键代码
    filenameTrain = 'TFRecord/train.tfrecords'
    filenameTest = 'TFRecord/test.tfrecords'
    writerTrain = tf.python_io.TFRecordWriter(filenameTrain)
    writerTest = tf.python_io.TFRecordWriter(filenameTest)
    folders = os.listdir(HOME_PATH)
    for subFoldersName in folders:
        label = transform_label(subFoldersName)
        path = os.path.join(HOME_PATH, subFoldersName)  # 文件夹路径
        subFoldersNameList = os.listdir(path)
        i = 0
        for imageName in subFoldersNameList:
            imagePath = os.path.join(path, imageName)
            images = cv2.imread(imagePath)
            res = cv2.resize(images, (128, 128), interpolation=cv2.INTER_CUBIC)
            image_raw_data = res.tostring()
            example = tf.train.Example(features=tf.train.Features(feature={
                'label': _int64_feature(label),
                'image_raw': _bytes_feature(image_raw_data)
            }))
            if i <= len(subFoldersNameList) * 3 / 4:
                writerTrain.write(example.SerializeToString())
            else:
                writerTest.write(example.SerializeToString())
            i += 1
在做数据的时候,我打算将3/4的数据用做训练集,剩下的1/4数据作为测试集,方便起见,将其保存为两个文件。
基本流程就是遍历Fnt目录下的所有文件夹,再进入子文件夹遍历其目录下的图片文件,然后用OpenCV的imread方法将其读入,再将图片数据转化为字符串。在TFRecord提供的数据结构中`_bytes_feature'是存储字符串的。
以上将图片成功读入并写入了TFRecord的数据结构中,那图片对应的标签怎么办呢?
def transform_label(folderName):
    label_dict = {
        'Sample001': 0,
        'Sample002': 1,
        'Sample003': 2,
        'Sample004': 3,
        'Sample005': 4,
        'Sample006': 5,
        'Sample007': 6,
        'Sample008': 7,
        'Sample009': 8,
        'Sample010': 9,
        'Sample011': 10,
    }
    return label_dict[folderName]
我建立了一个字典,由于一个文件下的图片都是同一类的,所以将图片对应的文件夹名字与它所对应的标签,产生映射关系。代码中label = transform_label(subFoldersName)通过该方法获得,图片的标签。
方法二
在使用方法一产生的数据训练模型,会发现非常容易产生过拟合。因为我们在读数据的时候是将它打包成batch读入的,虽然可以使用tf.train.shuffle_batch方法将队列中的数据打乱再读入,但是由于一个类中的数据过多,会导致即便打乱后也是同一个类中的数据。例如:数字0有1000个样本,假设你读取的队列长达1000个,这样即便打乱队列后读取的图片任然是0。这在训练时容易过拟合。为了避免这种情况发生,我的想法是在做数据时将图片打乱后写入。对应文件MakeTFRecord2.py,关键代码如下
    folders = os.listdir(HOME_PATH)
    for subFoldersName in folders:
        path = os.path.join(HOME_PATH, subFoldersName)  # 文件夹路径
        subFoldersNameList = os.listdir(path)
        for imageName in subFoldersNameList:
            imagePath = os.path.join(path, imageName)
            totalList.append(imagePath)
    # 产生一个长度为图片总数的不重复随机数序列
    dictlist = random.sample(range(0, len(totalList)), len(totalList))
    print(totalList[0].split('\\')[1].split('-')[0])    # 这是图片对应的类别
    i = 0
    for path in totalList:
        images = cv2.imread(totalList[dictlist[i]])
        res = cv2.resize(images, (128, 128), interpolation=cv2.INTER_CUBIC)
        image_raw_data = res.tostring()
        label = transform_label(totalList[dictlist[i]].split('\\')[1].split('-')[0])
        print(label)
        example = tf.train.Example(features=tf.train.Features(feature={
            'label': _int64_feature(label),
            'image_raw': _bytes_feature(image_raw_data)
        }))
        if i <= len(totalList) * 3 / 4:
            writerTrain.write(example.SerializeToString())
        else:
            writerTest.write(example.SerializeToString())
        i += 1
基本过程:遍历目录下所有的图片,将它的路径加入一个大的列表。通过一个不重复的随机数序列,来控制使用哪张图片。这就达到随机的目的。
怎么获取标签呢?图片文件都是类型-序号这个形式命名的,这里通过获取它的类型名,建立字典产生映射关系。
def transform_label(imgType):
    label_dict = {
        'img001': 0,
        'img002': 1,
        'img003': 2,
        'img004': 3,
        'img005': 4,
        'img006': 5,
        'img007': 6,
        'img008': 7,
        'img009': 8,
        'img010': 9,
        'img011': 10,
    }
    return label_dict[imgType]
原尺寸图片CNN
对应CNN_train.py文件
训练的时候怎么读取TFRecord数据呢,参考以下代码
# 读训练集数据
def read_train_data():
    reader = tf.TFRecordReader()
    filename_train = tf.train.string_input_producer(["TFRecord128/train.tfrecords"])
    _, serialized_example_test = reader.read(filename_train)
    features = tf.parse_single_example(
        serialized_example_test,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'image_raw': tf.FixedLenFeature([], tf.string),
        }
    )
    img_train = features['image_raw']
    images_train = tf.decode_raw(img_train, tf.uint8)
    images_train = tf.reshape(images_train, [128, 128, 3])
    labels_train = tf.cast(features['label'], tf.int64)
    labels_train = tf.cast(labels_train, tf.int64)
    labels_train = tf.one_hot(labels_train, 10)
    return images_train, labels_train
通过features[键名]的方式将存入的数据读取出来,键名和数据类型要与写入的保持一致。
关于这里的卷积神经网络,我是参考王学长培训时的代码写的。当然照搬肯定不行,会遇到loss NaN的情况,我解决的方法是仿照AlexNet中,在卷积后加入LRN层,进行局部响应归一化。在设置参数时,加入l2正则项。关键代码如下
def weights_with_loss(shape, stddev, wl):
    var = tf.truncated_normal(stddev=stddev, shape=shape)
    if wl is not None:
        weight_loss = tf.multiply(tf.nn.l2_loss(var), wl, name='weight_loss')
        tf.add_to_collection('losses', weight_loss)
    return tf.Variable(var)
def net(image, drop_pro):
    W_conv1 = weights_with_loss([5, 5, 3, 32], 5e-2, wl=0.0)
    b_conv1 = biasses([32])
    conv1 = tf.nn.relu(conv(image, W_conv1) + b_conv1)
    pool1 = max_pool_2x2(conv1)
    norm1 = tf.nn.lrn(pool1, 4, bias=1, alpha=0.001 / 9.0, beta=0.75)
    W_conv2 = weights_with_loss([5, 5, 32, 64], stddev=5e-2, wl=0.0)
    b_conv2 = biasses([64])
    conv2 = tf.nn.relu(conv(norm1, W_conv2) + b_conv2)
    norm2 = tf.nn.lrn(conv2, 4, bias=1, alpha=0.001 / 9.0, beta=0.75)
    pool2 = max_pool_2x2(norm2)
    W_conv3 = weights_with_loss([5, 5, 64, 128], stddev=0.04, wl=0.004)
    b_conv3 = biasses([128])
    conv3 = tf.nn.relu(conv(pool2, W_conv3) + b_conv3)
    pool3 = max_pool_2x2(conv3)
    W_conv4 = weights_with_loss([5, 5, 128, 256], stddev=1 / 128, wl=0.004)
    b_conv4 = biasses([256])
    conv4 = tf.nn.relu(conv(pool3, W_conv4) + b_conv4)
    pool4 = max_pool_2x2(conv4)
    image_raw = tf.reshape(pool4, shape=[-1, 8 * 8 * 256])
    # 全连接层
    fc_w1 = weights_with_loss(shape=[8 * 8 * 256, 1024], stddev=1 / 256, wl=0.0)
    fc_b1 = biasses(shape=[1024])
    fc_1 = tf.nn.relu(tf.matmul(image_raw, fc_w1) + fc_b1)
    # drop-out层
    drop_out = tf.nn.dropout(fc_1, drop_pro)
    fc_2 = weights_with_loss([1024, 10], stddev=0.01, wl=0.0)
    fc_b2 = biasses([10])
    return tf.matmul(drop_out, fc_2) + fc_b2
128x128x3原图训练过程

在验证集上的正确率

这里使用的是1281283的图片,图片比较大,所以我产生了一个想法。在做TFRecord数据的时候,将图片尺寸减半。所以就有了第二种方法。
图片尺寸减半CNN
对应文件CNN_train2.py
与上面那种方法唯一的区别是将图片尺寸128*128*3改成了64*64*3所以我这里就不重复说明了。
64x64x3图片训过程

在验证集上的正确率

保存模型
在CNN_train.py中,对应保存模型的代码是
def save_model(sess, step):
    MODEL_SAVE_PATH = "./model128/"
    MODEL_NAME = "model.ckpt"
    saver = tf.train.Saver()
    saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=step)
save_model(sess, i)
i是迭代的次数,可以不填其对应的参数global_step
在测试集上检验准确率
对应文件AccuracyTest.py
代码基本与训练的代码相同,这里直接讲怎么恢复模型。关键代码
    ckpt = tf.train.get_checkpoint_state(MODEL_PATH)
    if ckpt and ckpt.model_checkpoint_path:
        #加载模型
        saver.restore(sess, ckpt.model_checkpoint_path)
值得一提的是tf.train.get_checkpoint_state该方法会自动找到文件夹下迭代次数最多的模型,然后读入。而saver.restore(sess, ckpt.model_checkpoint_path)方法将恢复,模型在训练时最后一次迭代的变量参数。
查看读入的TFRecord图片
对应文件ReadTest.py
如果你想检查下在制作TFRecord时,图片是否处理的正确,最简单的方法就是将图片显示出来。关键代码如下
def plot_images(images, labels):
    for i in np.arange(0, 20):
        plt.subplot(5, 5, i + 1)
        plt.axis('off')
        plt.title(labels[i], fontsize=14)
        plt.subplots_adjust(top=1.5)
        plt.imshow(images[i])
    plt.show()
plot_images(image, label

总结
在摸索过程中遇到很多问题,多亏了王学长耐心帮助,也希望这篇文章能帮助更多人吧。
新手上路,如果有错,欢迎指正,谢谢。
代码已上传github:https://github.com/wmpscc/TensorflowBaseDemo
使用TensorFlow训练模型的基本流程的更多相关文章
- 使用TensorFlow训练模型的基本流程【转】
		原文地址(https://github.com/wmpscc/TensorflowBaseDemo ) 本篇文章将介绍使用tensorflow的训练模型的基本流程,包括制作读取TFRecord,训练和 ... 
- tensorflow之神经网络实现流程总结
		tensorflow之神经网络实现流程总结 1.数据预处理preprocess 2.前向传播的神经网络搭建(包括activation_function和层数) 3.指数下降的learning_rate ... 
- 深度学习入门篇--手把手教你用 TensorFlow 训练模型
		欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:付越 导语 Tensorflow在更新1.0版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(https://git ... 
- 如何用Tensorflow训练模型成pb文件和和如何加载已经训练好的模型文件
		这篇薄荷主要是讲了如何用tensorflow去训练好一个模型,然后生成相应的pb文件.最后会将如何重新加载这个pb文件. 首先先放出PO主的github: https://github.com/ppp ... 
- TensorFlow——训练模型的保存和载入的方法介绍
		我们在训练好模型的时候,通常是要将模型进行保存的,以便于下次能够直接的将训练好的模型进行载入. 1.保存模型 首先需要建立一个saver,然后在session中通过saver的save即可将模型保存起 ... 
- Window7安装tensorflow整套环境详细流程
		安装tensorflow方式有好多种,为了方便编译环境以及包管理,这里采用Anaconda平台安装tensorflow. tensorflow官网:http://www.tensorflow.org/ ... 
- tensorflow搭建神经网络基本流程
		定义添加神经层的函数 1.训练的数据2.定义节点准备接收数据3.定义神经层:隐藏层和预测层4.定义 loss 表达式5.选择 optimizer 使 loss 达到最小 然后对所有变量进行初始化,通过 ... 
- 基于tensorflow训练模型的显存不足解决办法
		import tensorflow as tfimport osos.environ["CUDA_VISIBLE_DEVICES"] = '0' #指定第一块GPU可用config ... 
- Tensorflow[架构流程]
		1. tensorflow工作流程 如官网所示: 根据整体架构或者代码功能可以分为: 图1.1 tensorflow架构 如图所示,一层C的api接口将底层的核运行时部分与顶层的多语言接口分离开. 而 ... 
随机推荐
- 解决Python3.7安装pygame报错You are using pip version 10.0.1, however version 19.1 is available.
			背景: 学习python开发中,需要用到pygame插件,因此按照参考书<Python编程实践,从入门到实践>指引安装Pygame包. 但是利用pip 命令安装 .whl 文件时,报错(如 ... 
- 纪中某日c组模拟赛 2314. 最短路
			2314. 最短路 (File IO): input:dti.in output:dti.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto Problem ... 
- JavaScript使用MQTT
			1.MQTT Server使用EMQTTD开源库,自行安装配置: 2.JS使用Websocket连接通信. 3.JS的MQTT库为paho-mqtt,git地址:https://github.com/ ... 
- .Net框架的模块代码生成器--其一(dotnet new)
			小白教程声明,首先先介绍一下.Net 框架及模块是什么情况: 1.公司的大佬会把框架的代码打包成Nuget包放在公司的服务器上 2.公司会专门开一个git仓库,存储模块的代码,每个模块都有其独立的文件 ... 
- 两种从 TensorFlow 的 checkpoint生成 frozenpb 的方法
			1. 从 ckpt-.data,ckpt-.index 和 .meta 生成 frozenpb import os import tensorflow as tf from tensorflow.py ... 
- Jenkins+robotframework持续集成环境(二)
			配置Jenkins上的robotframework环境 一.添加robot插件 需要导一个robot framework 的包,导包方式如下: 1.进入插件管理页面,选择“可选插件”,在右侧搜索栏搜索 ... 
- opencv —— 在 VS 中的配置
			添加一个新的 .cpp 文件到工程中 打开菜单栏视图中的属性管理器 选择 Debug|x64 ... 
- Ansible Tower 3.5.1 平台部署和破解
			原创 Ansible Tower 3.5.1 平台部署和破解 Ansible Tower (以前叫’AWX’)是能够帮助任何IT团队更容易使用Ansible的解决方案.该方案基于web. Tower允 ... 
- 今日头条 SEO 研究,值得深思的 5 个问题
			在做SEO的过程中,实际上,我并不是“技术挂”更多的是基于搜索原理与大量的实战,总结相关的经验,这么多年,经常养成一个小习惯,总是记录一些工作中遇到的一些小问题与小技巧. 特别是2017年,12月份开 ... 
- 【你不知道的javaScript 中卷 笔记2】javaScript中的类型转换
			1.1 对象内部属性 [[Class]] 常见的原生函数: String() Number() Boolean() Array() Object() Function() RegExp() Date( ... 
 
			
		