Description###

有一张n×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为

能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input###

输入包含多组数据。

输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output###

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input###

2

4 4 3

10 10 5

Sample Output###

20

148

HINT###

1 < =N.m < =10^5 , 1 < =Q < =2×10^4


想法##

orz PoPoQQQ……

基本想法同“YY的GCD”

线性筛可筛出每个数i的约数和s[i]

之后离线处理,将a与s[]分别从小到大排序处理,莫比乌斯反演,树状数组维护前缀和。


代码##

注意:诡异的取模需要注意一下。

#include<cstdio>
#include<iostream>
#include<algorithm> #define P 1<<31 using namespace std; typedef long long ll;
const int N = 100005; int mu[N];
ll s[N],sm[N];
int p[N],prime[N],pnum;
void getmu(){
mu[1]=s[1]=1;
for(int i=2;i<N;i++) p[i]=1;
for(int i=2;i<N;i++){
if(p[i]){
prime[pnum++]=i;
mu[i]=-1;
s[i]=sm[i]=1+i;
}
for(int j=0;j<pnum && (ll)prime[j]*i<N;j++){
int id=prime[j]*i;
p[id]=0;
if(i%prime[j]==0){
mu[id]=0;
s[id]=s[i]/sm[i]*(sm[i]*prime[j]+1);
sm[id]=sm[i]*prime[j]+1;
break;
}
mu[id]=-mu[i];
s[id]=s[i]*(1+prime[j]);
sm[id]=1+prime[j];
}
}
}
int num[N];
bool cmp(int x,int y) { return s[x]<s[y]; } struct Bit{
ll c[N];
int lowbit(int x) { return x&(-x); }
void add(int x,ll y){
while(x<N){
(c[x]+=y)%=P;
x+=lowbit(x);
}
}
ll sum(int x){
ll ret=0;
while(x){
(ret+=c[x])%=P;
x-=lowbit(x);
}
return ret;
}
}f; struct data{
int n,m,a,id;
bool operator < (const data &b) const{
return a<b.a;
}
}d[N];
ll ans[N]; int main()
{
int T;
getmu();
for(int i=1;i<N;i++) num[i]=i;
sort(num+1,num+1+100000,cmp);
scanf("%d",&T);
for(int i=1;i<=T;i++){
scanf("%d%d%d",&d[i].n,&d[i].m,&d[i].a);
d[i].id=i;
}
sort(d+1,d+1+T); int t=1,n,m;
for(int i=1;i<=T;i++){
while(t<N && s[num[t]]<=d[i].a) {
for(int j=1;(ll)j*num[t]<N;j++)
f.add(j*num[t],s[num[t]]*mu[j]);
t++;
}
n=d[i].n; m=d[i].m;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans[d[i].id]+=(f.sum(r)-f.sum(l-1))*(n/l)*(m/l);
}
}
for(int i=1;i<=T;i++)
printf("%lld\n",ans[i]&2147483647); return 0;
}

[bzoj3529] [洛谷P3312] [Sdoi2014] 数表的更多相关文章

  1. 洛谷 P3312 [SDOI2014]数表 解题报告

    P3312 [SDOI2014]数表 题目描述 有一张\(N*M\)的数表,其第\(i\)行第\(j\)列(\(1\le i \le n\),\(1 \le j \le m\))的数值为能同时整除\( ...

  2. 洛谷P3312 - [SDOI2014]数表

    Portal Solution 共\(T(T\leq2\times10^4)\)组测试数据.给出\(n,m(n,m\leq10^5),a(a\leq10^9)\),求\[ \sum_{i=1}^n\s ...

  3. 洛谷P3312 [SDOI2014]数表(莫比乌斯反演+树状数组)

    传送门 不考虑$a$的影响 设$f(i)$为$i$的约数和 $$ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(gcd(i,j))$$ $$=\sum\limi ...

  4. 洛谷 P3312 [SDOI2014]数表

    式子化出来是$\sum_{T=1}^m{\lfloor}\frac{n}{T}{\rfloor}{\lfloor}\frac{m}{T}{\rfloor}\sum_{k|T}\mu(\frac{T}{ ...

  5. 洛咕3312 [SDOI2014]数表

    洛咕3312 [SDOI2014]数表 终于独立写出一道题了...真tm开心(还是先写完题解在写的) 先无视a的限制,设\(f[i]\)表示i的约数之和 不妨设\(n<m\) \(Ans=\su ...

  6. 并不对劲的bzoj3529:loj2193:p3312:[SDOI2014]数表

    题目大意 定义函数\(f(x)=\sum_{k|x}k\) \(t\)(\(t\leq2*10^4\))组询问,每组给定\(n,m,a\)(\(n,m\leq10^5,a\leq10^9\)),求: ...

  7. P3312 [SDOI2014]数表

    啊啊啊我昨天怎么没写题解wwww 补昨日题解... 题目链接 : https://www.luogu.org/problemnew/show/P3312 也是莫反 我要把fft留到今天写 [和zyn小 ...

  8. 洛谷 P3313 [SDOI2014]旅行 解题报告

    P3313 [SDOI2014]旅行 题目描述 S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,满足从一个城市出发可以到达其它所有城市.每个城市信仰不同的宗教,如飞天面条神教.隐形独角兽教 ...

  9. luogu P3312 [SDOI2014]数表

    传送门 我们看要求的东西\[\sum_{i=1}^{n}\sum_{j=1}^{m}[\sigma(gcd(i,j))\le a]\sigma(gcd(i,j))\] 然而\(\le a\)比较烦,可 ...

随机推荐

  1. 【codeforces 749A】Bachgold Problem

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  2. CF140CNew Year Snowmen

    CF140C 题目大意:堆雪人,需要三个大小不同的雪球,现有\(n\)个给定大小的雪球,问最多堆多少个雪人 一个很明显的思路是把每种雪球出现的个数记录下来,然后直接扔到大根堆里面,每次选择剩下出现次数 ...

  3. js 的this指向问题

    this指向的,永远只可能是对象! this指向谁,永远不取决于this写在哪!而是取决于函数在哪调用. this指向的对象,我们称之为函数的上下文context,也叫函数的调用者. 1:通过函数名直 ...

  4. oracle 包 简单使用

    理解PL/SQL包 简介 包(package)的主要作用是用于逻辑组合相关的PL/SQL类型 比如记录类型或者集合类型,PL/SQL游标或游标声明以及PL/SQL子程序 还可以包含任何可以在块的声明区 ...

  5. dotnet 如何调试某个文件是哪个代码创建

    我发现了自己的软件,会在桌面创建一个 1.txt 文件,但是我不知道是哪个代码创建的,那么如何进行快速的调试找到是哪个代码创建的 最简单的方法是使用 VisualStudio 全局搜 1.txt 看是 ...

  6. 云栖深度干货 | 打造“云边一体化”,时序时空数据库TSDB技术原理深度解密

    本文选自云栖大会下一代云数据库分析专场讲师自修的演讲——<TSDB云边一体化时序时空数据库技术揭秘> 自修 —— 阿里云智能数据库产品事业部高级专家       认识TSDB 第一代时序时 ...

  7. Java 学习笔记(15)——反射

    Java中的类文件最终会被编译为.class 文件,也就是Java字节码.这个字节码中会存储Java 类的相关信息.在JVM执行这些代码时首先根据 java 命令中指定的类名找到.class 文件然后 ...

  8. JDBC 数据源

    概述 JNDI 数据源配置的相关内容已经在 JNDI 资源文档中详细介绍过.但从 Tomcat 用户的反馈意见来看,有些配置的细节问题非常棘手. 针对常用的数据库,我们已经给 Tomcat 用户提供了 ...

  9. 模型正则化,dropout

    正则化 在模型中加入正则项,防止训练过拟合,使测试集效果提升 Dropout 每次在网络中正向传播时,在每一层随机将一些神经元置零(相当于激活函数置零),一般在全连接层使用,在卷积层一般随机将整个通道 ...

  10. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...