1827: [Usaco2010 Mar]gather 奶牛大集会

Description

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。 考虑一个由五个农场组成的国家,分别由长度各异的道路连接起来。在所有农场中,3号和4号没有奶牛居住。

Input

第一行:一个整数N * 第二到N+1行:第i+1行有一个整数C_i * 第N+2行到2*N行,第i+N+1行为3个整数:A_i,B_i和L_i。

Output

  • 第一行:一个值,表示最小的不方便值。

    Sample Input

    5

1

1

0

0

2

1 3 1

2 3 2

3 4 3

4 5 3

Sample Output

15

题解

考虑在点\(x\)处的答案为\(ans\),总奶牛数为\(tot\),i为根子树总奶牛数为\(size_i\),对于\(x\)的一个儿子\(y\)的答案为\(ans^{'}\),\(y\)到\(x\)边权为\(w\)

\[ans^{'} = ans - size_i \times w + (tot - size_i) * w\]
化简得
\[ans^{'} = ans + (tot - 2 \times size_i) * w\]
即\(tot - 2 \times size_i < 0\)时t比x优
从根跑下来找到最优点然后以它为起点\(dfs\)/\(bfs\)一遍就行了。。

嘴巴题4 「BZOJ1827」[Usaco2010 Mar] gather 奶牛大集会的更多相关文章

  1. 【BZOJ1827】[Usaco2010 Mar]gather 奶牛大集会 树形DP

    [BZOJ][Usaco2010 Mar]gather 奶牛大集会 Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...

  2. [Usaco2010 Mar]gather 奶牛大集会

    [Usaco2010 Mar]gather 奶牛大集会 题目 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 ...

  3. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP

    [Usaco2010 Mar]gather 奶牛大集会 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1 ...

  4. 【树形DP/搜索】BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会

    1827: [Usaco2010 Mar]gather 奶牛大集会 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 793  Solved: 354[Sub ...

  5. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会( dp + dfs )

    选取任意一个点为root , size[ x ] 表示以 x 为根的子树的奶牛数 , dp一次计算出size[ ] && 选 root 为集会地点的不方便程度 . 考虑集会地点由 x ...

  6. BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP

    BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP 题意:Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...

  7. bzoj1827 [Usaco2010 Mar]gather 奶牛大集会

    不就是移一下树根,回溯一下吗? 诶?黄学长为什么可以直接找? 诶?这不是重心吗? YY了一下证明 很简单 由于重心max{sz[v]} <= sz[u] / 2的性质,可以证明每一步远离重心的移 ...

  8. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会

    Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,0 ...

  9. BZOJ 1827 [Usaco2010 Mar]gather 奶牛大集会(树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1827 [题目大意] 给出一棵有点权和边权的树, 请确定一个点,使得每个点到这个点的距离 ...

随机推荐

  1. JAVA数据结构之二叉树

    用树作为存储数据的结构兼具像数组一样查询速度快和像链表一样具有很快的插入和删除数据项的优点 我们用圆点表示节点,连接圆的直线表示边如下图所示就表示了一颗树,接下来我们讨论的二叉树即每个节点最多只有两个 ...

  2. JavaScript 对象与函数

    对象参考手册 Array Boolean Date Math Number String RegExp Global 前言 在js中什么都是对象(包括函数). 函数是用来实现具体功能的代码,用一种方式 ...

  3. Windows 10 连接服务器

    { windows + r    input mstsc } { //mstsc D:\TOOL\Servers.rdp /v 127.0.0.1:9998 }

  4. python封装email模块

    一.代码 from email.mime.text import MIMEText from email.header import Header from email.utils import pa ...

  5. mongodb操作指令(一):数据库,集合,文档

    数据库 查看所有数据库 show dbs 查看当前数据库 db 创建使用数据库use runoob 删除数据库 db.dropDatabase() 集合 创建集合db.createCollection ...

  6. VS2010-MFC(图形图像:GDI对象之画笔CPen)

    转自:http://www.jizhuomi.com/software/246.html 上一节讲了CDC类及其屏幕绘图函数,本节的主要内容是GDI对象之画笔CPen. GDI对象 在MFC中,CGd ...

  7. ICPC 2018 徐州赛区网络赛

    ACM-ICPC 2018 徐州赛区网络赛  去年博客记录过这场比赛经历:该死的水题  一年过去了,不被水题卡了,但难题也没多做几道.水平微微有点长进.     D. Easy Math 题意:   ...

  8. shell脚本练习06

    ######################################################################### # File Name: -.sh # Author ...

  9. java_序列化

    import java.io.*; class People implements Serializable { /* * 序列化和反序列化的时候,会抛出就NotSerializableExcepti ...

  10. Activit单元i测试(与spring集成测试)

    1.测试 eclipse下安装activiti插件以及maven 右键新建activiti project(这时会自动创建pom依赖以及activiti.cfg.xml,但还不是maven项目) 选中 ...