摘要: RocketMQ源码分析之从官方示例窥探RocketMQ事务消息实现基本思想。

在阅读本文前,若您对RocketMQ技术感兴趣,请加入RocketMQ技术交流群


RocketMQ4.3.0版本开始支持事务消息,后续分享将开始将剖析事务消息的实现原理。首先从官方给出的Demo实例入手,以此通往RocketMQ事务消息的世界中。

官方版本未发布之前,从apache rocketmq第一个版本上线后,代码中存在与事务消息相关的代码,例如COMMIT、ROLLBACK、PREPARED,在事务消息未开源之前网上对于事务消息的“声音”基本上是使用类似二阶段提交,主要是根据消息系统标志MessageSysFlag中定义来推测的:

  • TRANSACTION_PREPARED_TYPE
  • TRANSACTION_COMMIT_TYPE
  • TRANSACTION_ROLLBACK_TYPE

消息发送者首先发送TRANSACTION_PREPARED_TYPE类型的消息,然后根据事务状态来决定是提交或回滚事务发送commit请求或rollback请求,如果commit/rollback请求丢失后,rocketmq会在指定超时时间后回查事务状态来决定提交或回滚事务。

让我们各自带着自己的理解和猜测,从阅读RocketMQ官方提供的Demo程序入手,试图窥探一些大体的信息。

Demo示例程序位于:/rocketmq-example/src/main/java/org/apache/rocketmq/example/transaction包中。该包中未放置消息消费者,为了验证事务的消息消费情况,我们可以从其他包copy一个消费者,从而先运行生产者,然后运行消费者,判断事务消息的预发放、提交、回滚等效果,二话不说,先运行一下,看下效果再说:
消息发送端运行结果:

SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5767EC0000, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=1], queueOffset=0]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D57680F0001, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=2], queueOffset=1]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D57681E0002, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=3], queueOffset=2]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D57682B0003, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=0], queueOffset=3]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768380004, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=1], queueOffset=4]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768490005, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=2], queueOffset=5]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768560006, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=3], queueOffset=6]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768640007, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=0], queueOffset=7]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768730008, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=1], queueOffset=8]
SendResult [sendStatus=SEND_OK, msgId=C0A8010518DC6D06D69C8D5768800009, offsetMsgId=null, messageQueue=MessageQueue [topic=transaction_topic_test, brokerName=broker-a, queueId=2], queueOffset=9]

消息消费端效果:

Consumer Started.
ConsumeMessageThread_1 Receive New Messages: [MessageExt [queueId=0, storeSize=325, queueOffset=0, sysFlag=8, bornTimestamp=1532745715812, bornHost=/192.168.1.5:55482, storeTimestamp=1532745749010, storeHost=/192.168.1.5:10911, msgId=C0A8010500002A9F0000000000001DE8, commitLogOffset=7656, bodyCRC=988340972, reconsumeTimes=0, preparedTransactionOffset=5477, toString()=Message{topic='transaction_topic_test', flag=0, properties={MIN_OFFSET=0, REAL_TOPIC=transaction_topic_test, TRANSACTION_CHECK_TIMES=1, MAX_OFFSET=1, KEYS=KEY7, TRAN_MSG=true, CONSUME_START_TIME=1532746024360, UNIQ_KEY=C0A8010518DC6D06D69C8D5768640007, WAIT=true, PGROUP=please_rename_unique_group_name, TAGS=TagC, REAL_QID=0}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 101, 116, 77, 81, 32, 55], transactionId='C0A8010518DC6D06D69C8D5768640007'}]]
ConsumeMessageThread_2 Receive New Messages: [MessageExt [queueId=1, storeSize=325, queueOffset=0, sysFlag=8, bornTimestamp=1532745715768, bornHost=/192.168.1.5:55482, storeTimestamp=1532745749008, storeHost=/192.168.1.5:10911, msgId=C0A8010500002A9F0000000000001B91, commitLogOffset=7057, bodyCRC=601994070, reconsumeTimes=0, preparedTransactionOffset=4496, toString()=Message{topic='transaction_topic_test', flag=0, properties={MIN_OFFSET=0, REAL_TOPIC=transaction_topic_test, TRANSACTION_CHECK_TIMES=1, MAX_OFFSET=1, KEYS=KEY4, TRAN_MSG=true, CONSUME_START_TIME=1532746024361, UNIQ_KEY=C0A8010518DC6D06D69C8D5768380004, WAIT=true, PGROUP=please_rename_unique_group_name, TAGS=TagE, REAL_QID=1}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 101, 116, 77, 81, 32, 52], transactionId='C0A8010518DC6D06D69C8D5768380004'}]]
ConsumeMessageThread_3 Receive New Messages: [MessageExt [queueId=2, storeSize=325, queueOffset=0, sysFlag=8, bornTimestamp=1532745715727, bornHost=/192.168.1.5:55482, storeTimestamp=1532745748834, storeHost=/192.168.1.5:10911, msgId=C0A8010500002A9F000000000000193A, commitLogOffset=6458, bodyCRC=1401636825, reconsumeTimes=0, preparedTransactionOffset=3515, toString()=Message{topic='transaction_topic_test', flag=0, properties={MIN_OFFSET=0, REAL_TOPIC=transaction_topic_test, TRANSACTION_CHECK_TIMES=1, MAX_OFFSET=1, KEYS=KEY1, TRAN_MSG=true, CONSUME_START_TIME=1532746024368, UNIQ_KEY=C0A8010518DC6D06D69C8D57680F0001, WAIT=true, PGROUP=please_rename_unique_group_name, TAGS=TagB, REAL_QID=2}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 101, 116, 77, 81, 32, 49], transactionId='C0A8010518DC6D06D69C8D57680F0001'}]]

综上所述,服务端发送了10条消息,而消费端只收到3条消息,应该是由于事务回滚,造成只提交了3条消息,为了更加严谨,可以安装一个rocketmq-consonse,更加直观的观察shangshagn's上述结果:

接下来对示例代码进行解读:

1、生产者端代码解读:

public class TransactionProducer {
public static void main(String[] args) throws MQClientException, InterruptedException {
TransactionListener transactionListener = new TransactionListenerImpl(); // @1
TransactionMQProducer producer = new TransactionMQProducer("please_rename_unique_group_name");
producer.setNamesrvAddr("127.0.0.1:9876");
ExecutorService executorService = new ThreadPoolExecutor(2, 5, 100, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(2000), new ThreadFactory() {
@Override
public Thread newThread(Runnable r) {
Thread thread = new Thread(r);
thread.setName("client-transaction-msg-check-thread");
return thread;
}
}); // @2
producer.setExecutorService(executorService); // @3
producer.setTransactionListener(transactionListener); // @4
producer.start();
String[] tags = new String[] {"TagA", "TagB", "TagC", "TagD", "TagE"};
for (int i = 0; i < 10; i++) { // @5
try {
Message msg =
new Message("transaction_topic_test", tags[i % tags.length], "KEY" + i,
("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.sendMessageInTransaction(msg, null);
System.out.printf("%s%n", sendResult); Thread.sleep(10);
} catch (MQClientException | UnsupportedEncodingException e) {
e.printStackTrace();
}
}
for (int i = 0; i < 100000; i++) { //这里只是阻止生产者过早退出,导致事务消息的相关机制无法运行
Thread.sleep(1000);
}
producer.shutdown();
}
}

代码@1:创建TransactionListener 实例,字面理解为事务消息事件监听器,下文详细对其进行展开。
代码@2:ExecutorService executorService,创建一个线程池,其线程的名称前缀”client-transaction-msg-check-thread“,从字面理解为客户端事务消息状态检测线程,我们可以大胆的猜测一下是不是这个线程池调用TransactionListener方法,完成对事务消息的检测呢?【这里只是作者的猜测,大家不能当真,在作者后续文章发布后,如果该观点错误,会加以修复,这里写出来,主要是想分享一下我读源码的方法】。
代码@3:为事务消息发送者设置线程池。
代码@4:为事务消息发送者设置事务监听器。
代码@5:发送10条消息。

2、TransactionListener代码解读

public class TransactionListenerImpl implements TransactionListener {
private AtomicInteger transactionIndex = new AtomicInteger(0); private ConcurrentHashMap<String, Integer> localTrans = new ConcurrentHashMap<>(); @Override
public LocalTransactionState executeLocalTransaction(Message msg, Object arg) {
int value = transactionIndex.getAndIncrement();
int status = value % 3;
localTrans.put(msg.getTransactionId(), status);
return LocalTransactionState.UNKNOW;
} @Override
public LocalTransactionState checkLocalTransaction(MessageExt msg) {
Integer status = localTrans.get(msg.getTransactionId());
if (null != status) {
switch (status) {
case 0:
return LocalTransactionState.UNKNOW;
case 1:
return LocalTransactionState.COMMIT_MESSAGE;
case 2:
return LocalTransactionState.ROLLBACK_MESSAGE;
}
}
return LocalTransactionState.COMMIT_MESSAGE;
}
}
  1. executeLocalTransaction方法:记录本地事务的事务状态,这里其实现就是循环设置事务消息的状态为0,1,2,demo中是把消息的状态数据存放在一个Map中。实际应用时通常会持久化消息的事务状态,例如数据库或缓存。
  2. checkLocalTransaction方法,事务回查业务实现,查本地事务表,判断事务的状态如为0:UNKNOW,1:COMMIT_MESSAGE;ROLLBACK_MESSAGE。这里就能解释,生产者连续发10条消息,因为只有3条消息的事务状态为COMMIT_MESSAGE,故消息消费者只能消费3条。

到这里,基本上还是可以得知事务消息的实现方式,基本与文章开头所示的“网上声音”实现类似,下一节将详细分析TransactionMQProducer事务消息发送的实现细节。

郑重声明:本文主要是展示事务消息的基本使用,本文所下的结论还仅仅是作者的猜测,下一篇文章,将重点分析事务消息的实现细节,本文一个非常重要的目的,是向读者朋友们展示作者学习源码的一个方法,总结为:先做全面了解(网上,官方文档)、然后加以自己的思考,从Demo实例入手学习,将学习任务分解之,边写边看。

这算不算文末有彩蛋呢?呵呵,下一篇见:详细分析RocketMQ事务消息的实现细节。

本文节选自书籍《RocketMQ技术内幕:RocketMQ架构设计与实现原理》

RocketMQ源码分析之从官方示例窥探:RocketMQ事务消息实现基本思想的更多相关文章

  1. RocketMQ 源码分析 —— Message 发送与接收

    1.概述 Producer 发送消息.主要是同步发送消息源码,涉及到 异步/Oneway发送消息,事务消息会跳过. Broker 接收消息.(存储消息在<RocketMQ 源码分析 —— Mes ...

  2. RocketMQ源码分析之RocketMQ事务消息实现原理上篇(二阶段提交)

    在阅读本文前,若您对RocketMQ技术感兴趣,请加入 RocketMQ技术交流群 根据上文的描述,发送事务消息的入口为: TransactionMQProducer#sendMessageInTra ...

  3. Hadoop2源码分析-YARN RPC 示例介绍

    1.概述 之前在<Hadoop2源码分析-RPC探索实战>一文当中介绍了Hadoop的RPC机制,今天给大家分享关于YARN的RPC的机制.下面是今天的分享目录: YARN的RPC介绍 Y ...

  4. ROCKETMQ源码分析笔记1:tools

    rocketmq源码解析笔记 大家好,先安利一下自己,本人男,35岁,已婚.目前就职于小资生活(北京),职位是开发总监. 姓名DaneBrown 好了.我保证本文绝不会太监!转载时请附上以上安利信息. ...

  5. ROCKETMQ源码分析笔记2:client

    CLIENT 之前讲过tools里面有大量调用client的东西.为了从源码层面了解rocket,决定啃下client这块骨头. pom 先看pom,看看CLIENT依赖谁.看完后原来是依赖commo ...

  6. rocketmq源码分析3-consumer消息获取

    使用rocketmq的大体消息发送过程如下: 在前面已经分析过MQ的broker接收生产者客户端发过来的消息的过程,此文主要讲述订阅者获取消息的过程,或者说broker是怎样将消息传递给消费者客户端的 ...

  7. RocketMQ 源码分析之路由中心(NameServer)

    你可能没有看过 RocketMQ 的架构图,没关系,一起来学习一下,RocketMQ 架构图如下: 在 RocketMQ 中,有四个角色: Producer:消息的生产者,每个 MQ 中间件都有. C ...

  8. RocketMQ源码分析之RocketMQ事务消息实现原理中篇----事务消息状态回查

    上节已经梳理了RocketMQ发送事务消息的流程(基于二阶段提交),本节将继续深入学习事务状态消息回查,我们知道,第一次提交到消息服务器时消息的主题被替换为RMQ_SYS_TRANS_HALF_TOP ...

  9. rocketmq源码分析4-事务消息实现原理

    为什么消息要具备事务能力 参见还是比较清晰的.简单的说 就是在你业务逻辑过程中,需要发送一条消息给订阅消息的人,但是期望是 此逻辑过程完全成功完成之后才能使订阅者收到消息.业务逻辑过程 假设是这样的: ...

随机推荐

  1. Nlog配置实例

      彩色Console target <?xml version="1.0" encoding="utf-8" ?> <nlog xmlns= ...

  2. 10月25日上午PHP继承多态

    概念:子类可以继承父类的一切 方法重写:在子类里面对父类的方法进行重写,实现自己独特的功能.特点:单继承:一个子类只能有一个父类,一个父类可以派生出多个子类.override重写(子类对父类的重写) ...

  3. iOS开发中对RunLoop的个人心得

    从接触iOS到现在也有将近两年了,对iOS中的RunLoop也有了一定的认识,下面讲讲个人对RunLoop的理解.   初识RunLoop RunLoops是与线程相关联的基础部分,一个Run Loo ...

  4. 使用F#开发量化模型都缺什么?

    量化模型多数是基于统计的,因此,统计运算库应该是必备的.在Matlab.R中包含了大量的统计和概率运算,可以说拿来就用,非常方便,相比之下,F#的资源就很少了,这里给大家提供几个链接,可以解决一部分问 ...

  5. hust1384---The value of F[n]

    Description For any integer i>=3 we have F[i]=(F[i-1]+2*F[i-2]+3*F[i-3])%9901; Now give you F[0], ...

  6. Linux格式化硬盘 常用命令小记

    今天新蛋上订购了一块1TB的硬盘打算装Ubuntu,当然先要做好功课,查一下注意事项啦! 基本功,格式化命令,以格式化 /dev/sda1 分区为例:$ sudo umount /dev/sda1   ...

  7. 【树状数组】 poj 2352

    题意:给出n个平面二维坐标,对于每个坐标,如果这个坐标跟(0,0)形成的矩形内包含的点数为 k (包含边界,但不包含坐标本身),那么这个坐标就是 level k.输出level 0 - n-1的点数分 ...

  8. WinDbg调试 C# dmp

    WinDbg C#调试 打开windbg,加载需要调试的c# dmp. 设置好sympath等. 查看蹦会的c#主进程依赖的.Net环境 可以查看进程名对应的*.config文件. 开始加载符号,假设 ...

  9. systemd取消对服务重启的限制

    默认情况下,一个服务在10秒内最多允许启动5次.当超过5次后,会报如下错误: Job for xx.service failed because start of the service was at ...

  10. winform左右滑动

    public static class FormTransform { public static void TransformSize(Form frm, int newWidth, int new ...