斜率优化裸题

题意大概是:求 最小的 \(m^2s^2\) =\(m^2(\frac{1}{m}\sum_{i=1}^{m}(sum_i - {\frac{\sum_{i=1}^{m}sum_i}{m})^2})\)

= \(m^2 (\frac{1}{m} \sum_{i=1}^{m}sum_i^2 - \frac{1}{m^2}(\sum_{i=1}^{m}sum_i)^2)\)

= \(m\sum_{i=1}^{m}sum_i ^2 - (\sum_{i=1}^{m}sum_i)^2\)

然后我们发现\((\sum_{i=1}^{m}sum_i)^2\)是一个定值

所以我们只需要最小化\(m\sum_{i=1}^{m}sum_i ^2\)

发现 \(m\) 这个常数也可以最后再乘上

所以 考虑 最小化 \(\sum_{i=1}^{m}sum_i ^2\)

转移方程是 \(f_{i,j}\) = \(min\){\(f_{i-1,k}+(sum_j-sum_k)^2\)}

这样就可以 \(n^2m\)求解了

考虑斜率优化

比较 \(x\) 和 \(y\)

设 \(x\) 的转移优于 \(y\)

即 \(f_{i-1,x} +(sum_j-sum_x)^2<f_{i-1,y}+(sum_j-sum_y)^2\)

\(f_{i-1,x}+(sum_j^2+sum_x^2-2sum_{j}*sum_{x})<f_{i-1,y}+(sum_j^2+sum_y^2-2sum_j*sum_y)\)

\(\large \frac{f_{i-1,x}-f_{i-1,y}+sum_x^2-sum_y^2}{sum_x-sum_y}<2*sum_{j}\)

很显然这样就可以斜率优化了

// Isaunoya
#include<bits/stdc++.h>
using namespace std ;
#define int long long
#define fi first
#define se second
#define pb push_back
inline int read() {
register int x = 0 , f = 1 ;
register char c = getchar() ;
for( ; ! isdigit(c) ; c = getchar()) if(c == '-') f = -1 ;
for( ; isdigit(c) ; c = getchar()) x = (x << 1) + (x << 3) + (c & 15) ;
return x * f ;
}
template < typename T > inline bool cmax(T & x , T y) {
return x < y ? (x = y) , 1 : 0 ;
}
template < typename T > inline bool cmin(T & x , T y) {
return x > y ? (x = y) , 1 : 0 ;
}
inline int QP(int x , int y , int Mod){ int ans = 1 ;
for( ; y ; y >>= 1 , x = (x * x) % Mod)
if(y & 1) ans = (ans * x) % Mod ;
return ans ;
}
int n , m ;
const int N = 3000 + 5 ;
int a[N] , sum[N] ;
int f[2][N] , q[N] ;
inline int sqr(int x) { return x * x ; }
inline double slope(int i , int j , int k) {
return 1.00 * (f[i & 1][j] - f[i & 1][k] + sqr(sum[j]) - sqr(sum[k])) / (double)(sum[j] - sum[k]) ;
}
signed main() {
n = read() ; m = read() ;
for(register int i = 1 ; i <= n ; i ++) a[i] = read() ;
for(register int i = 1 ; i <= n ; i ++) sum[i] = sum[i - 1] + a[i] ;
memset(f , 0x3f , sizeof(f)) ;
f[0][0] = 0 ;
for(register int i = 1 ; i <= n ; i ++) f[1][i] = sum[i] * sum[i] ;
for(register int i = 2 ; i <= m ; i ++) {
int h = 1 , t = 0 ;
for(register int j = 1 ; j <= n ; j ++) {
while(h < t && slope(i - 1 , q[h] , q[h + 1]) < 2 * sum[j]) h ++ ;
int k = q[h] ; f[i & 1][j] = f[(i & 1) ^ 1][k] + sqr(sum[j] - sum[k]) ;
while(h < t && slope(i - 1 , q[t] , q[t - 1]) > slope(i - 1 , q[t] , j)) t -- ;
q[++ t] = j ;
}
} printf("%lld\n" , m * f[m & 1][n] - sqr(sum[n])) ;
return 0 ;
}

P4072 [SDOI2016]征途的更多相关文章

  1. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  2. [洛谷P4072] SDOI2016 征途

    问题描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...

  3. 洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)

    洛谷题目传送门 一开始肯定要把题目要求的式子给写出来 我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\) 题目要乘\ ...

  4. 洛谷P4072 [SDOI2016]征途(斜率优化)

    传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...

  5. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  6. 动态规划(决策单调优化):BZOJ 4518 [Sdoi2016]征途

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 532  Solved: 337[Submit][Status][ ...

  7. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  8. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  9. BZOJ_4518_[Sdoi2016]征途_斜率优化

    BZOJ_4518_[Sdoi2016]征途_斜率优化 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到 ...

随机推荐

  1. DOCKER 学习笔记9 Kubernetes (K8s) 生产级容器编排 上

    前言 在上一节的学习中.我们已经可以通过最基本的 Docker Swarm 创建集群,然后在集群里面加入我们需要运行的任务 以及任务的数量 这样我们就创建了一个服务. 当然,这样的方式在我们本地虚拟机 ...

  2. C++中STL库函数的基本运用

    学了这么长时间的STL库,现在我觉得是有必要对过去的题目和所遇到的问题做一下整理了,以便于之后更好的展开练习: 一. 为什么要用STL库? 1.简单粗暴(省事). 2.便于解决复杂的问题(在贪心题目中 ...

  3. Docker的基本使用与简介

    1 Docker简介 1.1 什么是虚拟化 在计算机中,虚拟化(英语:Virtualization)是一种资源管理技术,是将计算机的各种实体资源,如服务器.网络.内存及存储等,予以抽象.转换后呈现出来 ...

  4. tar命令详解及使用实例

    tar命令 [root@linux ~]# tar [-cxtzjvfpPN] 文件与目录 …. 参数: -c :创建压缩文件 -x :解开压缩文件 -t :查看tar包里面的文件! 上面3个参数只能 ...

  5. postman批量接口测试/批量导入/批量参数化简要全过程及遇到问题处理方法

    简单说明下postman批量接口调用的过程及注意事项: 1.报文调试(建议先调通再批量执行,统筹安排时间) 2.参数化,例如: "address": "{{address ...

  6. JS代码格式化时间戳

    一.[24小时制]yyyy-MM-dd HH:mm:ss new Date().toJSON() // 2019-12-13T13:12:32.265Z 通过上面的方法,基本就可以将日期格式化,然后稍 ...

  7. pymongo(看后转载,在原基础上添加了类连接和简单调用)

    一.MongoDB 数据库操作 1. 连接数据库 import pymongo conn = pymongo.Connection() # 连接本机数据库 # conn = pymongo.Conne ...

  8. 反弹shell备忘录

    反弹shell备忘录 简单理解,通常是我们主动发起请求,去访问服务器(某个IP的某个端口),比如我们常访问的web服务器:http(https)://ip:80,这是因为在服务器上面开启了80端口的监 ...

  9. linux之ls目录处理命令

    目录处理命令:ls 解释 命令名称:ls 命令英文原意:list 命令所在路径:/bin/ls 执行权限:所有用户 功能描述:显示目录文件 语法 ls 选项[-ald] [文件或目录] -a 显示所有 ...

  10. 常见Linux命令学习

    Linux命令学习 命令分类: 文件处理命令 权限管理命令 文件搜索命令 帮助命令 用户管理命令 压缩解压命令 网络命令 关机重启命令 1.文件处理命令 命令格式:命令 [-选项] [参数] 例:ls ...