PP: Deep clustering based on a mixture of autoencoders
Problem: clustering
A clustering network transforms the data into another space and then selects one of the clusters. Next, the autoencoder associated with this cluster is used to reconstruct the data-point.
Introduction:
traditional method: data------> extract a feature vector from each object --------> aggregate groups of vectors in a feature space.
cluster is represented by an autoencoder network. ??how
common method: k-means; but for the high-dimensional dataset, it's less useful because inter-point distances become less informative in high-dimensional spaces.
如果对于找一个序列的pattern来说,是不是就是时间维度作为高维情况,每个pattern作为一个cluster,而有的子序列不能归到cluster当中。
representation learning has been used to map the input data into a low-dimensional feature space.
Attempts: apply unsupervised deep learning approaches for clustering. ??how
However, most focus on clustering over a low-dimensional feature space.
Transform the data into more clustering-friendly representations:
A deep version of k-means is based on learning a data representation and applying k-means in the embedded space.
How to represent a cluster:
a vector VS an autoencoder network.
Data collapsing problem: 数据崩溃问题,对于每个数据库,你必须重新调一遍程序。
for multivariate time series, how to find patterns.
1. find patterns: SAX; TICC; slide windows; 导数
2. VG, statistic features.
3.
Supplementary knowledge:
1. Pattern recognition and clustering
Pattern recognition is a mature field in computer science with well-established techniques for the assignment of unknown patterns to categories, or classes. A pattern is defined as a vector of some number of measurements, called features. Usually, a pattern recognition system uses training samples from known categories to form a decision rule for unknown patterns. The unknown pattern is assigned to one of the categories according to the decision rule. Since we are interested in the classes of documents that have been assigned by the user, we can use pattern recognition techniques to try to classify previously unseen documents into the user's categories. While pattern recognition techniques require that the number and labels of categories are known, clustering techniques are unsupervised, requiring no external knowledge of categories. Clustering methods simply try to group similar patterns into clusters whose members are more similar to each other (according to some distance measure) than to members of other clusters. There is no a priori knowledge of patterns that belong to certain groups, or even how many groups are appropriate. Refer to basic pattern recognition and clustering texts such as [5, 6, 7] for further information.
We first employ pattern recognition techniques on documents to attempt to find features for classification, then focus on clustering the raw features of the documents.
PP: Deep clustering based on a mixture of autoencoders的更多相关文章
- 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- 论文解读SDCN《Structural Deep Clustering Network》
前言 主体思想:深度聚类需要考虑数据内在信息以及结构信息. 考虑自身信息采用 基础的 Autoencoder ,考虑结构信息采用 GCN. 1.介绍 在现实中,将结构信息集成到深度聚类中通常需要解决以 ...
- 【论文阅读】Deep Clustering for Unsupervised Learning of Visual Features
文章:Deep Clustering for Unsupervised Learning of Visual Features 作者:Mathilde Caron, Piotr Bojanowski, ...
- 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...
- Deep Clustering Algorithms
Deep Clustering Algorithms 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 本文研究路线:深度自编码器(Deep Autoen ...
- Paper Reading——LEMNA:Explaining Deep Learning based Security Applications
Motivation: The lack of transparency of the deep learning models creates key barriers to establishi ...
随机推荐
- mysql8.0编译安装
#下载依赖 yum install -y ncurses ncurses-devel cmake bison bison-devel openssl openssl-libs openssl-deve ...
- Ubuntu14.04安装tomcat-9.0.1的教程
系统环境:Ubuntu14.04 Tomcat安装版本:Apache tomcat 9.0.1 下载地址:http://tomcat.apache.org/download-90.cgi 安装包:ap ...
- typeof和类型转换
编程形式 ① 面向过程 ② 面向对象 ③ Js既面向过程又面向对象 typeof(数据) 1)typeof(数据)返回该数据是什么类型的 2)写法: ① typeof(数据) ② typeof 数据 ...
- NodeJs-promise和async_await语法
Callback hell回调地域 当我们以同步的方式编写耗时的代码,那么就会阻塞JS的单线程,造成CPU一直等待IO完成才去执行后面的代码. 而CPU的执行速度是远远大于硬盘IO速度的,这样等待只会 ...
- linux下(centos7)docker安装
参考链接https://docs.docker.com/install/linux/docker-ce/centos/ 第一步,确定是centos7及以上版本 cat /etc/redhat-rele ...
- java代码生成器 快速开发平台 二次开发 外包项目利器 springmvc SSM后台框架源码
. 权限管理:点开二级菜单进入三级菜单显示 角色(基础权限)和按钮权限 角色(基础权限): 分角色组和角色,独立分配菜单权限和增删改查权限. 按钮权限: 给角色分配按钮权限.2 ...
- Android在Activity中与Fragment中创建自定义菜单的区别
区别就在这里,Activity中添加菜单要这样: public boolean onCreateOptionsMenu(Menu menu) { getMenuInflater().inflate(R ...
- 今日确定开源近两年来的EA程序
从2018年开始研究mt4的mql,在2019年主要设计了NinjaLoveFishEA这款网格程序,稳定运行了1年多,今年的伊朗被袭击,造成金价大幅上涨,-18%止损我离场后,决定不再继续研究了. ...
- java的jdbc连接数据库,读取表中数据
连接数据库操作步骤如下 架包 jar 建表 源码解析 1:架包 jar根据自己本版本选择正确jar包,本例采用maven 管理局,在pom.xml 中添加如下代码,自动下载架包 <depende ...
- 折腾vue--环境搭建(一)
1.安装nodejs nodejs下载地址:https://nodejs.org/en/ 2.检测nodejs //检测nodejs版本 node -v //检测npm npm –v 3.安装vue ...