PP: Deep clustering based on a mixture of autoencoders
Problem: clustering
A clustering network transforms the data into another space and then selects one of the clusters. Next, the autoencoder associated with this cluster is used to reconstruct the data-point.
Introduction:
traditional method: data------> extract a feature vector from each object --------> aggregate groups of vectors in a feature space.
cluster is represented by an autoencoder network. ??how
common method: k-means; but for the high-dimensional dataset, it's less useful because inter-point distances become less informative in high-dimensional spaces.
如果对于找一个序列的pattern来说,是不是就是时间维度作为高维情况,每个pattern作为一个cluster,而有的子序列不能归到cluster当中。
representation learning has been used to map the input data into a low-dimensional feature space.
Attempts: apply unsupervised deep learning approaches for clustering. ??how
However, most focus on clustering over a low-dimensional feature space.
Transform the data into more clustering-friendly representations:
A deep version of k-means is based on learning a data representation and applying k-means in the embedded space.
How to represent a cluster:
a vector VS an autoencoder network.
Data collapsing problem: 数据崩溃问题,对于每个数据库,你必须重新调一遍程序。
for multivariate time series, how to find patterns.
1. find patterns: SAX; TICC; slide windows; 导数
2. VG, statistic features.
3.
Supplementary knowledge:
1. Pattern recognition and clustering
Pattern recognition is a mature field in computer science with well-established techniques for the assignment of unknown patterns to categories, or classes. A pattern is defined as a vector of some number of measurements, called features. Usually, a pattern recognition system uses training samples from known categories to form a decision rule for unknown patterns. The unknown pattern is assigned to one of the categories according to the decision rule. Since we are interested in the classes of documents that have been assigned by the user, we can use pattern recognition techniques to try to classify previously unseen documents into the user's categories. While pattern recognition techniques require that the number and labels of categories are known, clustering techniques are unsupervised, requiring no external knowledge of categories. Clustering methods simply try to group similar patterns into clusters whose members are more similar to each other (according to some distance measure) than to members of other clusters. There is no a priori knowledge of patterns that belong to certain groups, or even how many groups are appropriate. Refer to basic pattern recognition and clustering texts such as [5, 6, 7] for further information.
We first employ pattern recognition techniques on documents to attempt to find features for classification, then focus on clustering the raw features of the documents.
PP: Deep clustering based on a mixture of autoencoders的更多相关文章
- 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- 论文解读SDCN《Structural Deep Clustering Network》
前言 主体思想:深度聚类需要考虑数据内在信息以及结构信息. 考虑自身信息采用 基础的 Autoencoder ,考虑结构信息采用 GCN. 1.介绍 在现实中,将结构信息集成到深度聚类中通常需要解决以 ...
- 【论文阅读】Deep Clustering for Unsupervised Learning of Visual Features
文章:Deep Clustering for Unsupervised Learning of Visual Features 作者:Mathilde Caron, Piotr Bojanowski, ...
- 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...
- Deep Clustering Algorithms
Deep Clustering Algorithms 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 本文研究路线:深度自编码器(Deep Autoen ...
- Paper Reading——LEMNA:Explaining Deep Learning based Security Applications
Motivation: The lack of transparency of the deep learning models creates key barriers to establishi ...
随机推荐
- 文件图片上传目录 禁止执行php
apache配置上传目录禁止运行php的方法 导读: 禁止上传目录运行php等可执行文件可以从一定程度上增加网站的安全性, 禁止上传目录运行php的方法可以用.htaccess文件, 也可以直接在ap ...
- linux web站点常用压力测试工具httperf
一.工具下载&&安装 软件获取 ftp://ftp.hpl.hp.com/pub/httperf/ 这里使用的是如下的版本 ftp://ftp.hpl.hp.com/pub/httpe ...
- log4j2 springboot 特点与使用方法
Apache Log4j2 is an upgrade to Log4j that provides significant improvements over its predecessor, Lo ...
- Java中HashSet的重复性与判等运算重载
目录 还有一个故事--(平行世界篇) 还有一个美丽的梦幻家园:java.util 并且还有一个善战的达拉崩巴:HashSet 还有另外一个故事(不是虚假传说) 还有一对涂满毒药的夺命双匕:equals ...
- Arm开发板+Qt学习之路-multiple definition of
问题描述:在一个头文件a.h中定义一些变量x,在其他.c文件中(b.c,c.c)要用到.用一般的全局变量的方法,编译时总是提示error:multiple definition of x 问题分析:o ...
- leetcode--js--Longest Substring Without Repeating Characters
问题描述: Given a string, find the length of the longest substring without repeating characters. Example ...
- new function 到底做了什么?如何自己实现new function
前言 这是继function 与 Function 关系后写下的. 写这个起源于,我无聊的时候看到一道题目: 'foo' == new function() { var temp=String('fo ...
- Git分支管理介绍
分支管理 软件的版本控制以及分支管理贯穿于整个软件产品的生命周期,日常的项目管理对于开发团队能否有节奏且顺利的交付软件也很重要.本分支管理和版本控制规范主要分为3个部分,即分支管理规范.版本号规范.需 ...
- #《Essential C++》读书笔记# 第三章 泛型编程风格
基础知识 array与vector是连续存储空间,可以用指针的算术运算实现对容器的访问.list也是一个容器,不同的是,list的元素以一组指针相互链接(linked):前向(forward)指针指向 ...
- 如何用Eagle for Mac查看GIF动图的图文教程?
Mac版Eagle怎样打开查看GIF动图?eagle mac版以其功能强大,设计简洁等特点深受用户的喜爱.在Eagle众多功能中,打开查看GIF动图这一功能也是非常简单又好用的.今天小编要给大家分享的 ...