Kafka[1]是linkedin用于日志处理的分布式消息队列,linkedin的日志数据容量大,但对可靠性要求不高,其日志数据主要包括用户行为(登录、浏览、点击、分享、喜欢)以及系统运行日志(CPU、内存、磁盘、网络、系统及进程状态)。

当前很多的消息队列服务提供可靠交付保证,并默认是即时消费(不适合离线)。高可靠交付对linkedin的日志不是必须的,故可通过降低可靠性来提高性能,同时通过构建分布式的集群,允许消息在系统中累积,使得kafka同时支持离线和在线日志处理。

注:本文中发布者(publisher)与生产者(producer)可以互换,订阅者(subscriber)与消费者(consumer)可以互换。

Kafka的架构如下图所示:

Kafka存储策略

  1. kafka以topic来进行消息管理,每个topic包含多个part(ition),每个part对应一个逻辑log,有多个segment组成。
  2. 每个segment中存储多条消息(见下图),消息id由其逻辑位置决定,即从消息id可直接定位到消息的存储位置,避免id到位置的额外映射。
  3. 每个part在内存中对应一个index,记录每个segment中的第一条消息偏移。
  4. 发布者发到某个topic的消息会被均匀的分布到多个part上(随机或根据用户指定的回调函数进行分布),broker收到发布消息往对应part的最后一个segment上添加该消息,当某个segment上的消息条数达到配置值或消息发布时间超过阈值时,segment上的消息会被flush到磁盘,只有flush到磁盘上的消息订阅者才能订阅到,segment达到一定的大小后将不会再往该segment写数据,broker会创建新的segment。

发布与订阅接口

 

 

发布消息时,kafka client先构造一条消息,将消息加入到消息集set中(kafka支持批量发布,可以往消息集合中添加多条消息,一次行发布),send消息时,client需指定消息所属的topic。

订阅消息时,kafka client需指定topic以及partition num(每个partition对应一个逻辑日志流,如topic代表某个产品线,partition代表产品线的日志按天切分的结果),client订阅后,就可迭代读取消息,如果没有消息,client会阻塞直到有新的消息发布。consumer可以累积确认接收到的消息,当其确认了某个offset的消息,意味着之前的消息也都已成功接收到,此时broker会更新zookeeper上地offset registry(后面会讲到)。

 

高效的数据传输

  1. 发布者每次可发布多条消息(将消息加到一个消息集合中发布), sub每次迭代一条消息。
  2. 不创建单独的cache,使用系统的page cache。发布者顺序发布,订阅者通常比发布者滞后一点点,直接使用linux的page cache效果也比较后,同时减少了cache管理及垃圾收集的开销。
  3. 使用sendfile优化网络传输,减少一次内存拷贝。
 

无状态broker

  1. Broker没有副本机制,一旦broker宕机,该broker的消息将都不可用。
  2. Broker不保存订阅者的状态,由订阅者自己保存。
  3. 无状态导致消息的删除成为难题(可能删除的消息正在被订阅),kafka采用基于时间的SLA(服务水平保证),消息保存一定时间(通常为7天)后会被删除。
  4. 消息订阅者可以rewind back到任意位置重新进行消费,当订阅者故障时,可以选择最小的offset进行重新读取消费消息。
 

Consumer group

  1. 允许consumer group(包含多个consumer,如一个集群同时消费)对一个topic进行消费,不同的consumer group之间独立订阅。
  2. 为了对减小一个consumer group中不同consumer之间的分布式协调开销,指定partition为最小的并行消费单位,即一个group内的consumer只能消费不同的partition。
 

Zookeeper 协调控制

1. 管理broker与consumer的动态加入与离开。

2. 触发负载均衡,当broker或consumer加入或离开时会触发负载均衡算法,使得一

个consumer group内的多个consumer的订阅负载平衡。

3.  维护消费关系及每个partion的消费信息。

Zookeeper上的细节:

  1. 每个broker启动后会在zookeeper上注册一个临时的broker registry,包含broker的ip地址和端口号,所存储的topics和partitions信息。
  2. 每个consumer启动后会在zookeeper上注册一个临时的consumer registry:包含consumer所属的consumer group以及订阅的topics。
  3. 每个consumer group关联一个临时的owner registry和一个持久的offset registry。对于被订阅的每个partition包含一个owner registry,内容为订阅这个partition的consumer id;同时包含一个offset registry,内容为上一次订阅的offset。
 

消息交付保证

  1. kafka对消息的重复、丢失、错误以及顺序型没有严格的要求。
  2. kafka提供at-least-once delivery,即当consumer宕机后,有些消息可能会被重复delivery。
  3. 因每个partition只会被consumer group内的一个consumer消费,故kafka保证每个partition内的消息会被顺序的订阅。
  4. Kafka为每条消息为每条消息计算CRC校验,用于错误检测,crc校验不通过的消息会直接被丢弃掉。
 

Linkedin的应用环境

如下图,左边的应用于日志数据的在线实时处理,右边的应用于日志数据的离线分析(现将日志pull至hadoop或DWH中)。

 

 

Kafka的性能

 

测试环境: 2 Linux machines, each with 8 2GHz cores,  16GB  of  memory,  6  disks  with  RAID  10.  The  two machines  are  connected  with  a  1Gb  network  link.  One  of  the machines was used as the broker and the other machine was used as the producer or the consumer.

测试评价(by me):(1)环境过于简单,不足以说明问题。(2)对于producer持续的波动没有进行分析。(3)只有两台机器zookeeper都省了??

测试结果:如下图,完胜其他的message queue,单条消息发送(每条200bytes),能到50000messages/sec,50条batch方式发送,平均为400000messages/sec.

Kafka未来研究方向

1. 数据压缩(节省网络带宽及存储空间)

2. Broker多副本

3. 流式处理应用

原文链接:http://blog.chinaunix.net/uid-20196318-id-2420884.html

【转】KAFKA分布式消息系统的更多相关文章

  1. Kafka——分布式消息系统

    Kafka——分布式消息系统 架构 Apache Kafka是2010年12月份开源的项目,采用scala语言编写,使用了多种效率优化机制,整体架构比较新颖(push/pull),更适合异构集群. 设 ...

  2. KAFKA分布式消息系统[转]

    KAFKA分布式消息系统  转自:http://blog.chinaunix.net/uid-20196318-id-2420884.html Kafka[1]是linkedin用于日志处理的分布式消 ...

  3. 在Centos 7上安装配置 Apche Kafka 分布式消息系统集群

    Apache Kafka是一种颇受欢迎的分布式消息代理系统,旨在有效地处理大量的实时数据.Kafka集群不仅具有高度可扩展性和容错性,而且与其他消息代理(如ActiveMQ和RabbitMQ)相比,还 ...

  4. KAFKA分布式消息系统

    2015-01-05 大数据平台 Hadoop大数据平台 基本概念 kafka的工作方式和其他MQ基本相同,只是在一些名词命名上有些不同.为了更好的讨论,这里对这些名词做简单解释.通过这些解释应该可以 ...

  5. [转载] KAFKA分布式消息系统

    转载自http://blog.chinaunix.net/uid-20196318-id-2420884.html Kafka[1]是linkedin用于日志处理的分布式消息队列,linkedin的日 ...

  6. Kafka 分布式消息系统详解

    实际上kafka对机器的需求与Hadoop的类似. 原来,对于Linkin这样的互联网企业来说,用户和网站上产生的数据有三种: 需要实时响应的交易数据,用户提交一个表单,输入一段内容,这种数据最后是存 ...

  7. 分布式消息系统Kafka初步

    终于可以写kafka的文章了,Mina的相关文章我已经做了索引,在我的博客中置顶了,大家可以方便的找到.从这一篇开始分布式消息系统的入门. 在我们大量使用分布式数据库.分布式计算集群的时候,是否会遇到 ...

  8. 分布式消息系统kafka

    kafka:一个分布式消息系统 1.背景 最近因为工作需要,调研了追求高吞吐的轻量级消息系统Kafka,打算替换掉线上运行的ActiveMQ,主要是因为明年的预算日流量有十亿,而ActiveMQ的分布 ...

  9. 分布式消息系统Kafka初步(一) (赞)

    终于可以写kafka的文章了,Mina的相关文章我已经做了索引,在我的博客中置顶了,大家可以方便的找到.从这一篇开始分布式消息系统的入门. 在我们大量使用分布式数据库.分布式计算集群的时候,是否会遇到 ...

随机推荐

  1. Codeforces Round #561 (Div. 2) E. The LCMs Must be Large(数学)

    传送门 题意: 有 n 个商店,第 i 个商店出售正整数 ai: Dora 买了 m 天的东西,第 i 天去了 si 个不同的个商店购买了 si 个数: Dora 的对手 Swiper 在第 i 天去 ...

  2. spring json 返回中文乱码

    如前台显示的json数据中的中文为???,则可尝试以下方法. 方法一(推荐):在@RequestMapping中添加  produces={"text/html;charset=UTF-8; ...

  3. [转]ASP.NET WebApi OWIN 实现 OAuth 2.0

    OAuth(开放授权)是一个开放标准,允许用户让第三方应用访问该用户在某一网站上存储的私密的资源(如照片,视频,联系人列表),而无需将用户名和密码提供给第三方应用. OAuth 允许用户提供一个令牌, ...

  4. java的四种代码块

    用{}括起来的称为代码块: 普通代码块:类中方法的方法体 构造代码块:类中{}直接括起来的语句,每次创建对象都会被调用,先于构造函数执行 静态代码块:类中static{}括起来的语句,只执行一次,先于 ...

  5. vue-learning:5-template-v-for

    5 列表渲染的指令v-for v-for on Array / Object / String / Number v-for on template v-for on expression v-for ...

  6. koa2--07.cookies的设置和使用

    cookies本身在koa中即可直接设置和使用,不需要在安装中间件 //cookies的使用 const koa = require('koa'); var router = require('koa ...

  7. 【Docker】初识与应用场景认知

    什么是Docker? Docker是一个容器化平台,它以容器的形式将您的应用程序及其所有依赖项打包在一起,以确保您的应用程序在任何环境中无缝运行. 什么是Docker容器? Docker容器包括应用程 ...

  8. 博客同步到CSDN客户端

    同步本人博客到CSDN客户端 http://blog.csdn.net/johnnyz1234

  9. 利用脚本运行APP

    1.电脑安装Xcode(iOS)/Androidsdk(Android),连接手机,并在手机上安装相应代理,下图为iOS的Xcode代理样式: 2.打开Appium,点击搜索图标,添加并设置该手机信息 ...

  10. Visio主题与样式

    o visio内置了27种主题样式 共有四个分类 每个主题样式都有四个变体可供选择 重复就是复制的意思 就是复制页面 可以设置将某一个主题应用于当前页或者所有页 所有页面指的是所有有相同背景的页面 允 ...