qbxt Day 3

——2020.1.19 济南 主讲:李奥

目录一览

1.图论(kruskal算法,最短路径算法,拓扑排序)

总知识点:图论

一、kruskal算法
1.目的:求图的最小生成树
2.算法描述:
先将所有的边按照权值从小到大排序,相同权值的边顺序随意。
然后按顺序依次考虑将这些边加入最小生成树中:
若加入这条边后,当前已加入的边出现环,则不加入这条边。
若加入这条边后,当前已加入的边不出现环,则加入这条边。
3.代码实现:

qsort(a+1,m,sizeof(edge),cmp); //对边进行排序
for(i=1;i<=n;i++) belong[i]=i;
for(i=1;i<=m;i++){
    if(belong[a[i].x]!=belong[a[i].y]){
        ans+=a[i].k;
        for(j=1;j<=n;j++){
            if(belong[j]==belong[a[i].x])
                            belong[j]=belong[a[i].y];
            }
        }
}

二、最短路径
1.最短路径指所经过的边的权值最小的路径。(以下讨论主要针对有向图。)
2.算法:
(1)SPFA算法
解决问题:单元最短路

注:边权可以为负但不能有负环

最短路径的前缀也一定是最短路径

SPFA算法需要借助队列,一般使用STL中的队列。
注:STL的queue使用方法:
z.push() 在队列尾加入一个元素

z.pop() 弹出队列的队头

z.front() 取队头

z.empty() 判断队列非空
算法时间复杂度上限:O(N^N)(上限是相当慢的)
算法结构:
先固定一个起始节点s(d[i]表示起始节点s节点到节点i的目前已知的最短距离)。
最开始所有d[i]为inf,d[s]=0;(即什么都不知道)
有一个等待更新别人的d值的队列z
最开始只有s有资格更新别人,所以z.push(z)
每次取出队列里的第一个节点,用他的d值更新与他相邻的节点的d值,被更新的节点又有资格更新别人,因此也加入队列。

代码实现:

z.push(s);
v[s]=1;
while(!z.empty()){
     x=z.front();
     z.pop();
     v[x]=0;
     for(k=first[x];k;k=a[k].next){
         y=a[k].y;
         if(d[x]+a[k].k<d[y]){
             d[y]=d[x]+a[k].k;
             if(!v[y]){
        z.push(y);
        v[y]=1;
         }
         }
     }
}

(2)Floyd算法
解决问题:所有节点之间的最短路

时间复杂度:O(n^3)

思想:
Dp :f[k][i][j]表示从i到达j,中途经过的节点的编号必须小于等于k的情况的最短路。

初始化f[0][i][j]即为邻接矩阵。

代码:

for(k=1;k<=n;k++)
  for(i=1;i<=n;i++)
     for(j=1;j<=n;j++)
         f[k][i][j]=min(f[k-1][i][j],f[k-1][i][k]+f[k-1][k][j]);
//采用滚动数组:
for(k=1;k<=n;k++)
  for(i=1;i<=n;i++)
     for(j=1;j<=n;j++)
         f[i][j]=min(f[i][j],f[i][k]+f[k][j]);

三、拓扑排序:
拓扑图:有向无环图

拓扑排序:
对于拓扑图的点进行排序,使得若有一条边x->y,则x一定排在y前面。
找到第一个节点之后,将这个节点从图中删除,重复直到原图的点全部被删除。
代码实现:

for(i=1;i<=n;i++){
    if(d[i]==0)z.push(i);
}
while(!z.empty()){
    x=z.front();
    z.pop();
    A[++len]=x;
    for(k=first[x];k;k=a[k].next){
        y=a[k].y;
        d[y]--;
        if(d[y]==0) z.push(y);
    }
}

-------------------------------------------------------THE END------------------------------------------------

清北学堂—2020.1提高储备营—Day 3(图论初步(二))的更多相关文章

  1. 清北学堂—2020.1提高储备营—Day 4 afternoon(动态规划初步(一))

    qbxt Day 4 afternoon --2020.1.20 济南 主讲:顾霆枫 目录一览 1.动态规划初步 2.记忆化搜索 3.递推式动态规划 4.记忆话搜索与递推式动态规划的转化 5.状态转移 ...

  2. 清北学堂—2020.1提高储备营—Day 4 morning(数论)

    qbxt Day 4 morning --2020.1.20 济南 主讲:李奥 目录一览 1.一些符号与基本知识 2.拓展欧几里得,逆元与欧拉定理 3.线性筛法与积性函数(非重点) 总知识点:数论 一 ...

  3. 清北学堂—2020.1提高储备营—Day 3(图论初步(一))

    qbxt Day 3 --2020.1.19 济南 主讲:李奥 目录一览 1.图论(图.图的存储方式.最小生成树的定义) 总知识点:图论 前言:众所周知,图论是一个非常重要的部分,而这次集训也可以算从 ...

  4. 清北学堂—2020.1提高储备营—Day 2 afternoon(线段树、树状数组)

    qbxt Day 2 afternoon --2020.1.18 济南 主讲:李佳实 目录一览 1.线段树 2.二叉搜索树(略过) 3.树状数组 总知识点:基础数据结构(本人初学感觉好难) 一.线段树 ...

  5. 清北学堂—2020.1提高储备营—Day 1 morning(模拟、枚举、搜索)

    qbxt Day 1 morning --2020.1.17 济南 主讲:李佳实 目录一览 1.模拟和枚举 2.基础搜索算法(DFS.BFS.记忆化搜索)以及进阶搜索算法(纯靠自学) 总知识点:基础算 ...

  6. 清北学堂—2020.1提高储备营—Day 2 morning(并查集、堆)

    qbxt Day 2 morning --2020.1.18 济南 主讲:李佳实 目录一览 1.并查集 2.堆 总知识点:基础数据结构 一.并查集 1.描述:并查集是一类十分常用的数据类型,它有着十分 ...

  7. 清北学堂—2020.1提高储备营—Day 1 afternoon(二分、分治、贪心)

    qbxt Day 1 afternoon --2020.1.17 济南 主讲:李佳实 目录一览 1.二分法 2.分治 3.贪心 总知识点:基础算法 一.二分法 (1)算法分析:二分法是一种暴力枚举的优 ...

  8. 清北学堂—2020.3NOIP数学精讲营—Day 1 morning 重点笔记

    qbxt Day 1 morning 重点笔记 --2020.3.8 济南 主讲:钟皓曦 1 正数%负数==正数 负数%正数==负数 负数%负数==负数 a%b的答案的符号取决于a的符号. 2 快速幂 ...

  9. 清北学堂 2020 国庆J2考前综合强化 Day7

    目录 1. 题目 T1 魔力石 题目描述 Sol T2 和 题目描述 Sol T3 数对 题目描述 Sol T4 海豹王国 题目描述 Sol 考场策略 1. 题目 T1 魔力石 题目描述 题目描述 小 ...

随机推荐

  1. java获取本地IP地址集合包括虚拟机的ip

    public static ArrayList<String> getLocalIpAddr() { ArrayList<String> ipList = new ArrayL ...

  2. Redis搭建哨兵模式

    一 安装Redis 1. 从https://redis.io/download redis官网下载二进制包安装 例如:wget http://download.redis.io/releases/re ...

  3. PAT (Advanced Level) Practice 1001-1005

    PAT (Advanced Level) Practice 1001-1005 PAT 计算机程序设计能力考试 甲级 练习题 题库:PTA拼题A官网 背景 这是浙大背景的一个计算机考试 刷刷题练练手 ...

  4. 使用ClouderaManager管理的HBase的RegionServer无法启动(启动失败)的问题

    问题概述 "新冠期间"远程办公,需要重新搭建一套ClouderaManager(CM)开发环境,一位测试同事发现HBase的RegionServer无法启动,在CM界面上启动总是失 ...

  5. kubernetes中node心跳处理逻辑分析

    最近在查看一个kubernetes集群中node not ready的奇怪现象,顺便阅读了一下kubernetes kube-controller-manager中管理node健康状态的组件node ...

  6. node.js+express+mongoose实现用户增删查改案例

    node.js+express+mongodb对用户进行增删查改 一.用到的相关技术 使用 Node.js 的 express 框架搭建web服务 使用 express 中间件 body-parse ...

  7. Qt 条件编译 arm windows linux 判断 跨平台

    如果代码里面有些判断需要不同的参数做判断: 办法:在pro文件里面做定义 方法1:直接定义一个宏:用的时候可以直接判断,这样做不好的地方是编译前需要重新切换一下宏 1)定义宏 DEFINES += _ ...

  8. lwip的内存管理

    lwip可以不用malloc,而完全用pool,全用全局变量,没看明白怎么实现的. #if LWIP_NETCONN || LWIP_SOCKET LWIP_MEMPOOL(NETBUF, MEMP_ ...

  9. tomcat 访问权限设置

    1.全局设置,设置允许某些IP能够访问到tomcat服务器,或不能访问tomcat服务器 只需要编辑tomcat的server.xml,增加适当代码即可. 修改如下:在<Host>  &l ...

  10. Tensorflow和pytorch安装(windows安装)

    一. Tensorflow安装 1. Tensorflow介绍 Tensorflow是广泛使用的实现机器学习以及其它涉及大量数学运算的算法库之一.Tensorflow由Google开发,是GitHub ...