HZOI2019 星际旅行 欧拉路
题目大意:https://www.cnblogs.com/Juve/articles/11207540.html—————————>
题解:网上都是一句话题解:将所有的边拆成两条,问题变成去掉两条边,使得原图存在一条欧拉路径。注意新图中所有点的度数均为偶数,只需按照去掉任意2个自环、去掉任意1个自环和任意一条边、去掉两条有公共顶点的边进行讨论即可。注意图不连通的判断方式,不是点不连通,而是边不连通。
这显然十分晦涩难懂
题目要求m-2条边经过两次,2条边经过1次。
如果不考虑有两条边经过一次,那么把所有边经过两次就是走一个欧拉路,由起点走向终点
那么2条边经过一次怎么理解?就是由终点往回倒2条边
我们首先判断图的连通性,用并查集即可,但要判定单独的一个点在图的外面,没有任何边与它连通的情况(你也可以理解成只要所有的边在一个集合里就可以,不一定所有的点在同一集合中)
那么往回倒的这两条边有什么情况?
题中没有说不存在自环,那么倒回去的这两条边有三种情况:
1,两个自环
2,一个自环和一条非自环边
3,两条连在同一点的边
我们定义du[i]为不考虑自环情况下i的度,tot是自环的个数,
sum=($\sum_\limits{i=1}^{n}$du[i])/2,(除以2是因为一条边连接了两个点,所以会算重)
对于第一种情况,ans1=tot*(tot-1)/2(等价与从tot个自环选出2个不重复的,$C_{tot}^{2}$)
第二种情况:ans2=tot*sum(自环中选一个,非自环边选一个)
第三中情况:ans3=$\sum_\limits{i=1}^{n}$du[i]*(du[i]-1)/2(从与i相连的边中选出不重复的两条,$C_{du[i]}^{2}$)。
最终的答案就是三种情况相加。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#define MAXN 100005
#define ll long long
using namespace std;
ll fa[MAXN],n,m,du[MAXN],tot_c=0,ans=0,du2[MAXN],rt,sum=0;
ll find(ll x){
if(x==fa[x]) return x;
return fa[x]=find(fa[x]);
}
void unionn(ll x,ll y){
int a=find(x),b=find(y);
fa[a]=b;
}
int main(){
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++) fa[i]=i;
for(ll i=1,u,v;i<=m;i++){
scanf("%lld%lld",&u,&v);
if(u!=v){
unionn(u,v);
du[v]++,du[u]++;
}else tot_c++;
du2[v]++,du2[u]++;
}
for(ll i=1;i<=n;i++){
if(du2[i]){
rt=find(i);
break;
}
}
for(ll i=1;i<=n;i++){
if(rt!=find(i)&&du2[i]){
printf("0\n");
return 0;
}
}
for(ll i= 1;i<=n;i++)
ans+=du[i]*(du[i]-1)/2,sum+=du[i];
sum/=2;
ans+=tot_c*sum;
ans+=tot_c*(tot_c-1)/2;
printf("%lld\n",ans);
return 0;
}
ps:对于需要开long long的题我都是把所有变量全变成long long类型
HZOI2019 星际旅行 欧拉路的更多相关文章
- 星际旅行(欧拉路,欧拉回路)(20190718 NOIP模拟测试5)
瞎搞了一个ans+=du*(du-1)/2 wa20分,好桑心(话外音:居然还有二十分,出题人太周到了) 还是判欧拉路 题解没太仔细想,感觉还是kx的思路明白 具体就是:因为每条边要走两遍,可以把一条 ...
- [CSP-S模拟测试]:星际旅行(欧拉路)
题目传送门(内部题4) 输入格式 第一行两个整数$n,m$,表示行星和虫洞的数量.接下来$m$行,每行两个整数$u,v$,表示存在一个双向虫洞直接连接$u$和$v$.每一个虫洞最多会被描述一次. 输出 ...
- 洛谷P1341 无序字母对[无向图欧拉路]
题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...
- POJ1386Play on Words[有向图欧拉路]
Play on Words Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11846 Accepted: 4050 De ...
- hdu1161 欧拉路
欧拉路径是指能从一个点出发能够“一笔画”完整张图的路径:(每条边只经过一次而不是点) 在无向图中:如果每个点的度都为偶数 那么这个图是欧拉回路:如果最多有2个奇数点,那么出发点和到达点必定为该2点,那 ...
- UVA10054The Necklace (打印欧拉路)
题目链接 题意:一种由彩色珠子组成的项链.每个珠子的两半由不同的颜色组成.相邻的两个珠子在接触的地方颜色相同.现在有一些零碎的珠子,需要确定他们是否可以复原成完整的项链 分析:之前也没往欧拉路上面想, ...
- 洛谷 P1341 无序字母对 Label:欧拉路 一笔画
题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
- hihocoder 1181 欧拉路.二
传送门:欧拉路·二 #1181 : 欧拉路·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其 ...
随机推荐
- List、Map、Set 三个接口,存取元素时,各有什么特点
List与Set都是单列元素的集合,它们有一个功共同的父接口Collection. Set里面不允许有重复的元素, 存元素:add方法有一个boolean的返回值,当集合中没有某个元素,此时add方法 ...
- CF 1063B Labyrinth
传送门 解题思路 看上去很简单,\(bfs\)写了一发被\(fst\)...后来才知道好像一群人都被\(fst\)了,这道题好像那些每个点只经过一次的传统\(bfs\)都能被叉,只需要构造出一个一块一 ...
- ASP.NET自定义Validform的datatype
1.定义 <script type="text/javascript"> $(function () { $("#aa").Validform({ ...
- centos7 将home目录空间扩容到根目录
[root@localhost ~]# umount /home/ [root@localhost ~]# lvremove /dev/mapper/centos-home Do you really ...
- springcloud系列14 bus的使用
首先springcloud_bus原理: (1)完整流程:发送端(endpoint)构造事件event,将其publish到context上下文中(spring cloud bus有一个父上下文,bo ...
- js 禁止/允许页面滚动
参考:https://blog.csdn.net/huangfu_chunfeng/article/details/46429997 https://www.cnblogs.com/w ...
- U-BOOT 对 Nand Flash 命令的支持
U-BOOT 对 Nand Flash 命令的支持 在 UBOOT 下对 Nand Flash 的支持主要是在命令行下实现对 nand flash 的操作.对 nand flash 实现的命令 为: ...
- linux的mysql权限错误导致看不到mysql数据库
1.首先停止mysql服务:service mysqld stop2.加参数启动mysql:/usr/bin/mysqld_safe --skip-grant-tables & 然后就可以无任 ...
- 开发函数计算的正确姿势 —— 使用 ROS 进行资源编排
前言 首先介绍下在本文出现的几个比较重要的概念: 函数计算(Function Compute): 函数计算是一个事件驱动的服务,通过函数计算,用户无需管理服务器等运行情况,只需编写代码并上传.函数计算 ...
- 线性回归和梯度下降代码demo
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...