谷歌终于开源BERT代码:3 亿参数量,机器之心全面解读》,上周推送的这篇文章,全面解读基于TensorFlow实现的BERT代码。现在,PyTorch用户的福利来了:一个名为Hugging Face的团队近日公开了BERT模型的谷歌官方TensorFlow库的op-for-op PyTorch重新实现【点击阅读原文直接访问】:

https://github.com/huggingface/pytorch-pretrained-BERT

这个实现可以为BERT加载任何预训练的TensorFlow checkpoint(特别是谷歌的官方预训练模型),并提供一个转换脚本。

BERT-base和BERT-large模型的参数数量分别为110M和340M,为了获得良好的性能,很难使用推荐的batch size在单个GPU上对其进行微调。为了帮助微调模型,这个repo还提供了3种可以在微调脚本中激活技术:梯度累积(gradient-accumulation)、 multi-GPU 和分布式训练。

其结果如下:

  • 在序列级MRPC分类任务上,该实现使用小型BERT-base模型再现了原始实现的84%-88%的准确率。

  • 在token级的SQuAD 任务上,该个实现使用小型BERT-base模型再现了原始实现的88.52 F1的结果。

作者表示,正致力于在其他任务以及更大的BERT模型上重现结果。

BERT模型的PyTorch实现

这个存储库包含了谷歌BERT模型的官方TensorFlow存储库的op-for-op PyTorch重新实现。谷歌的官方存储库是与BERT论文一起发布的:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,作者是Jacob Devlin、Ming-Wei Chang、Kenton Lee和Kristina Toutanova。

这个实现可以为BERT加载任何预训练的TensorFlow checkpoint(特别是谷歌的预训练模型),并提供了一个转换脚本(见下文)。

此外,我们将在本周晚些时候添加多语言版本和中文版本的模型代码。

脚本:加载任何TensorFlow检查点

使用convert_tf_checkpoint_to_pytorch.py脚本,你可以在PyTorch保存文件中转换BERT的任何TensorFlow检查点(尤其是谷歌发布的官方预训练模型)。

这个脚本将TensorFlow checkpoint(以bert_model.ckpt开头的三个文件)和相关的配置文件(bert_config.json)作为输入,并为此配置创建PyTorch模型,从PyTorch模型的TensorFlow checkpoint加载权重并保存生成的模型在一个标准PyTorch保存文件中,可以使用 torch.load() 导入(请参阅extract_features.py,run_classifier.py和run_squad.py中的示例)。

只需要运行一次这个转换脚本,就可以得到一个PyTorch模型。然后,你可以忽略TensorFlow checkpoint(以bert_model.ckpt开头的三个文件),但是一定要保留配置文件(bert_config.json)和词汇表文件(vocab.txt),因为PyTorch模型也需要这些文件。

要运行这个特定的转换脚本,你需要安装TensorFlow和PyTorch。该库的其余部分只需要PyTorch。

下面是一个预训练的BERT-Base Uncased 模型的转换过程示例:


export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12python convert_tf_checkpoint_to_pytorch.py   --tf_checkpoint_path$BERT_BASE_DIR/bert_model.ckpt   --bert_config_file $BERT_BASE_DIR/bert_config.json   --pytorch_dump_path $BERT_BASE_DIR/pytorch_model.bin

你可以在这里下载Google的预训练转换模型:

https://github.com/google-research/bert#pre-trained-models

BERT的PyTorch模型

在这个库里,我们提供了三个PyTorch模型,你可以在modeling.py中找到:

  • BertModel - 基本的BERT Transformer 模型

  • BertForSequenceClassification - 顶部带有sequence classification head的BERT模型

  • BertForQuestionAnswering - 顶部带有token classification head 的BERT模型,

以下是每类模型的一些细节。

1 . BertModel

BertModel是一个基本的BERT Transformer模型,包含一个summed token、位置和序列嵌入层,然后是一系列相同的self-attention blocks(BERT-base是12个blocks, BERT-large是24个blocks)。

输入和输出与TensorFlow 模型的输入和输出相同。

具体来说,该模型的输入是:

  • input_ids:一个形状为[batch_size, sequence_length]的torch.LongTensor,在词汇表中包含单词的token索引

  • token_type_ids:形状[batch_size, sequence_length]的可选torch.LongTensor,在[0,1]中选择token类型索引。类型0对应于句子A,类型1对应于句子B。

  • attention_mask:一个可选的torch.LongTensor,形状为[batch_size, sequence_length],索引在[0,1]中选择。

模型的输出是由以下内容组成的一个元组:

  • all_encoder_layers:一个大小为[batch_size, sequence_length,hidden_size]的torch.FloatTensor列表,它是每个注意块末端隐藏状态的完整序列列表(即BERT-base的12个完整序列,BERT-large的24个完整序列)

  • pooled_output:一个大小为[batch_size, hidden_size]的torch.FloatTensor,它是在与输入(CLF)的第一个字符相关联的隐藏状态之上预训练的分类器的输出,用于训练Next-Sentence任务(参见BERT的论文)。

extract_features.py脚本提供了有关如何使用这类模型的示例,该脚本可用于为给定输入提取模型的隐藏状态。

2 . BertForSequenceClassification

BertForSequenceClassification是一个fine-tuning 模型,包括BertModel,以及BertModel顶部的一个序列级分类器(sequence-level classifier)。

序列级分类器是一个线性层,它将输入序列中第一个字符的最后隐藏状态作为输入(参见BERT论文中的图3a和3b)。

run_classifier.py脚本提供了关于如何使用此类模型的示例,该脚本可用于使用BERT微调单个序列(或序列对)分类器,例如用于MRPC任务。

3. BertForQuestionAnswering

BertForQuestionAnswering是一个fine-tuning 模型,包括BertModel,它在最后隐藏状态的完整序列之上具有token级分类器(token-level classifiers)。

token-level 分类器将最后隐藏状态的完整序列作为输入,并为每个token计算得分,(参见BERT论文的图3c和3d)。

run_squad.py脚本提供了有关如何使用此类模型的示例,该脚本可用于使用BERT微调token分类器,例如用于SQuAD任务。

详情请点击阅读原文


推荐阅读

131页超清 |《2018新一代人工智能白皮书:产业增长点研判》

老鸟程序员才知道的40个小技巧

资源 | 深度学习 & ChatBot全面总结

254页教程《Writing Code for NLP Research》

338页新书《Deep Learning in Natural Language Processing》

Pytorch | BERT模型实现,提供转换脚本【横扫NLP】的更多相关文章

  1. BERT模型源码解析

    BERT模型源码解析 modeling.py 目录 属性 类 class BertConfig(object)   BERT模型配置参数类 class BertModel(object)   BERT ...

  2. pytorch bert 源码解读

    https://daiwk.github.io/posts/nlp-bert.html 目录 概述 BERT 模型架构 Input Representation Pre-training Tasks ...

  3. Pytorch——BERT 预训练模型及文本分类

    BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文 ...

  4. Bert模型实现垃圾邮件分类

    近日,对近些年在NLP领域很火的BERT模型进行了学习,并进行实践.今天在这里做一下笔记. 本篇博客包含下列内容: BERT模型简介 概览 BERT模型结构 BERT项目学习及代码走读 项目基本特性介 ...

  5. BERT模型在多类别文本分类时的precision, recall, f1值的计算

    BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们 ...

  6. 想研究BERT模型?先看看这篇文章吧!

    最近,笔者想研究BERT模型,然而发现想弄懂BERT模型,还得先了解Transformer. 本文尽量贴合Transformer的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进 ...

  7. NLP学习(3)---Bert模型

    一.BERT模型: 前提:Seq2Seq模型 前提:transformer模型 bert实战教程1 使用BERT生成句向量,BERT做文本分类.文本相似度计算 bert中文分类实践 用bert做中文命 ...

  8. [NLP自然语言处理]谷歌BERT模型深度解析

    我的机器学习教程「美团」算法工程师带你入门机器学习   已经开始更新了,欢迎大家订阅~ 任何关于算法.编程.AI行业知识或博客内容的问题,可以随时扫码关注公众号「图灵的猫」,加入”学习小组“,沙雕博主 ...

  9. BERT模型图解

    转载于 腾讯Bugly 发表于 腾讯Bugly的专栏 原文链接:https://cloud.tencent.com/developer/article/1389555 本文首先介绍BERT模型要做什么 ...

随机推荐

  1. js经典校验之注册与登录校验

    平时都专注于后台功能的实现和逻辑需求的分析及数据库方面的设计,很少关注前端的设计,而项目开发过程中专门负责后台是不太可能的事,所以前端我们也需要会用,除了漂亮的首页等其他的交给美工来做,一些功能性的东 ...

  2. python中数字转换成字符串

    数字转换成字符串: num=123 str='%d' %num str就变成了"123"

  3. MySQL.之 一行内容转换多行

    MySQL.之 一行内容转换多行 描述: 将一行记录中的某一列值(值格式:数据之间用英文逗号隔开),将这一数据转换成多行. 例如:表 cds_var 中的 cds_value 中的数据格式:多个id之 ...

  4. 使用fast-json-stringify代替JSON.stringify

    使用JSON.stringify的思考 使用过JSON对象的程序员最常做的一项工作便是,将JSON对象转化为字符串.该字符串的用途很多,例如可以使用在WEB的URL中,在多个页面间进行传递. cons ...

  5. jQuery Scroll Path 滚插视图酷炫

    jQuery Scroll Path是一个jQuery的滚动路径插件,可以让你自定义滚动路径.该插件是使用canvas flavored的语法来绘制路径.可以通过鼠标滚轮上/下箭头键和空格键来查看路径 ...

  6. NOIP模拟 17.8.17

    NOIP模拟17.8.17 A 小 G 的字符串文件名 输入文件 输出文件 时间限制 空间限制str.pas/c/cpp str.in str.out 1s 128MB[题目描述]有一天,小 L 给小 ...

  7. Leetcode883.Projection Area of 3D Shapes三维形体投影面积

    在 N * N 的网格中,我们放置了一些与 x,y,z 三轴对齐的 1 * 1 * 1 立方体. 每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上. 现在,我们查 ...

  8. svn upgrade

    在我们把我们服务器上的svn 版本号升级以后,我们之前的代码再执行svn命令时,会提示需要执行svn upgrade命令把当前的代码由低版本的svn 上迁移到高版本的svn 上去. 直接执行svn u ...

  9. 解决“google快照无法打开”的简单而有效的方法~

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/yangle20081982/article/details/25892553        解决&q ...

  10. WPF自定义控件 依赖属性绑定

    控件cs文件 using System.ComponentModel; using System.Windows; using System.Windows.Controls; using Syste ...