神经网络的表现

在Training Set上表现不好 ----> 可能陷入局部最优
在Testing Set上表现不好 -----> Overfitting 过拟合

虽然在机器学习中,很容易通过SVM等方法在Training Set上得出好的结果,但DL不是,所以得先看Training Set上的表现。

要注意方法适用的阶段:
比如:dropout方法只适合于:在Training Data上表现好,在Testing Data上表现不好的。
如果在Training Data上就表现不好了,那么这个方法不适用。

神经网络的改进

1. New Activation Function

梯度消失:在输入层附近梯度小,在输出层梯度大,当参数还没有更新多少时,在输出层已经收敛了,这是激活函数\(sigmoid\)对值压缩的问题。
也就是一个比较大的input进去,出来的output比较小,所以最后对total loss的影响比较小,趋于收敛。

1.1 ReLU

如何解决梯度消失?
修改activation function为ReLU(Rectified Linear Unit),
ReLU input 大于0时,input 等于 output,input小于0时,output等于0。

其中,output为0的neural可以去掉,得到一个thinner linear network。

虽然局部是线性的,但这个network从总体上来说还是非线性的。

input小于0的部分,微分为0,这样就没法很好地更新参数了,所以有以下两种方法改进。
leaky ReLU,Parametric ReLU。

1.2 Maxout

此外,还可以通过Maxout自动学习activation function。ReLU是一种特殊的Maxout。

此外maxout可以与ReLU不同,如下图所示,可以有更灵活的形状,更多的piece(即更多的element)。

因为不是max的部分可以先去掉,所以可以不用train那些w,先train线性的局部。
当然,因为训练数据很多,最后都会被train到。

2. Adaptive Learning Rate

在Adagrad的基础上,Hinton提出了RMSProp方法。

对于local minimum的问题,因为每一个dimension都在谷底的情况很少,所以local minimum并没有那么多。

当然解决这个问题,有个Momentum的方法,模拟滚动的物理现象,加上惯性。

Adam方法,RMSProp + Momentum。

如果说在Testing Data上表现不好,可以用以下三种方法。

3. Early Stopping

用验证集去模拟测试集,在Testing Set表现开始变得不好的时候,停止Training。

4. Regularization

打个比方:小孩从出生到六岁,神经网络越来越多,但六岁以后开始变少。

在原来的Loss Function(minimize square error, cross entropy)的基础上加Regularization这一项(L2),不会加bias这一项,加Regularization的目的是让曲线更加平滑。

L2 Regularization 也叫 Weight Decay,这样每次都会让weight小一点。最后会慢慢变小趋近于0,但是会与后一项梯度的值达到平衡,使得最后的值不等于0。

用L1 Regularization也是可以的。

L2下降的很快,很快就会变得很小,在接近0时,下降的很慢,会保留一些接近01的值;
L1的话,减去一个固定的值(比较小的值),所以下降的很慢。

所以,通过L1-Norm training 出来的model,参数会有很大的值。

5. Dropout

对network里面的每个neural(包括input),做sampling(抽样)。 每个neural会有p%会被丢掉,跟着的weight也会被丢掉。

形象理解:(练武功&团队合作)

Dropout就是一种终极的集成学习 Ensemble。

可以理解为,因为有很多的model,Structure都不一样,
虽然每个model可能variance很大,但是如果它们都是很复杂的model时,平均起来时bias就很小,所以就比较准了。

如果直接将weight乘以 (1-p%),结果之前做average的结果跟output y是approximated。

【笔记】机器学习 - 李宏毅 - 10 - Tips for Training DNN的更多相关文章

  1. DNN训练技巧(Tips for Training DNN)

    本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 9-1:Tips for Training DNN>的学习笔记. 课程链接 Recipe of Deep Le ...

  2. 重构(Refactoring)技巧读书笔记(General Refactoring Tips)

    重构(Refactoring)技巧读书笔记 之一 General Refactoring Tips, Part 1 本文简要整理重构方法的读书笔记及个人在做Code Review过程中,对程序代码常用 ...

  3. Andrew Ng机器学习课程10补充

    Andrew Ng机器学习课程10补充 VC dimension 讲到了如果通过最小化训练误差,使用一个具有d个参数的hypothesis class进行学习,为了学习好,一般需要参数d的线性关系个训 ...

  4. Andrew Ng机器学习课程10

    Andrew Ng机器学习课程10 a example 如果hypothesis set中的hypothesis是由d个real number决定的,那么用64位的计算机数据表示的话,那么模型的个数一 ...

  5. 写出完美论文的十个技巧10 Tips for Writing the Perfect Paper

    10 Tips for Writing the Perfect Paper Like a gourmet meal or an old master painting, the perfect col ...

  6. 10 Tips for Writing Better Code (阅读理解)

    出发点 http://www.tuicool.com/articles/A7VrE33 阅读中文版本<编写质优代码的十个技巧>,对于我编码十年的经验,也有相同感受, 太多的坑趟过,太多的经 ...

  7. 笔记-python-standard library-8.10 copy

    笔记-python-standard library-8.10 copy 1.      copy source code:Lib/copy.py python中的赋值语句不复制对象,它创建了对象和目 ...

  8. SQL Server2012 T-SQL基础教程--读书笔记(8 - 10章)

    SQL Server2012 T-SQL基础教程--读书笔记(8 - 10章) 示例数据库:点我 CHAPTER 08 数据修改 8.1 插入数据 8.1.1 INSERT VALUES 语句 8.1 ...

  9. 机器学习笔记P1(李宏毅2019)

    该博客将介绍机器学习课程by李宏毅的前两个章节:概述和回归. 视屏链接1-Introduction 视屏链接2-Regression 该课程将要介绍的内容如下所示: 从最左上角开始看: Regress ...

随机推荐

  1. GetModuleFileNameEx遍历获取64bit程序路径失败的一种解决方法(Win7-64-bit)

    问题: 32位程序在64位系统上调用GetModuleFileNameEx()遍历获取64位进程的全路径失败,得到的路径都为空. 根据官方的说法: For the best results use t ...

  2. js笔记(3)--js实现数组转置(两种方法)

      js实现数组转置   第一种方法:   <script>     window.onload=function(){     var array1=[[11,22,33,333],[4 ...

  3. lua学习之语句篇

    语句 赋值 修改一个变量或者修改 table 中的一个字段的值 多重赋值,lua 先对等号右边的所有元素进行求值,然后再赋值 值的个数小于变量的个数,那么多余的变量就置为 nil 初始化变量,应该为每 ...

  4. XDOJ

    1000.a+b. #include<bits/stdc++.h> using namespace std; int a,b; int main() { ios::sync_with_st ...

  5. Codeforces_723

    A.取中间那个点即可. #include<bits/stdc++.h> using namespace std; ]; int main() { ios::sync_with_stdio( ...

  6. MVVM框架(二)---生命周期

    一.Vue 生命周期图解: 这张图是官方给出的,大家可能都看过.其中我们重点讲述以下几个钩子函数: beforeCreate  -->   created beforeMount   --> ...

  7. 深入JVM垃圾回收机制,值得你收藏

    JVM可以说是为了Java开发人员屏蔽了很多复杂性,让Java开发的变的更加简单,让开发人员更加关注业务而不必关心底层技术细节,这些复杂性包括内存管理,垃圾回收,跨平台等,今天我们主要看看JVM的垃圾 ...

  8. bind() 理解 【转】

    bind()可稍后执行  call()  apply() 为了搞清这个陌生又熟悉的bind,google一下,发现javascript1.8.5版本中原生实现了此方法,目前IE9+,ff4+,chro ...

  9. BeautifulSoup入门

    BeautifulSoup库入门 BeautifulSoup库的理解 BeautifulSoup库是解析.遍历.维护”标签树”的功能库 示例代码: from bs4 import BeautifulS ...

  10. NR / 5G - F-OFDM