2016.10.13 20:28

  很久没有写随笔了,自打小宝出生后就没有写过新的文章。数次来到博客园,想开始新的学习历程,总是被各种琐事中断。一方面确实是最近的项目工作比较忙,各个集群频繁地上线加多版本的提测,每次到了晚上就感觉很疲惫,另一方面确实是自己对自己最近有些放松,没有持续地学习。很庆幸今天能在一个忙碌的工作日后,开始着手这篇文章。

  来到大数据前,我对大数据可以说是一无所知。诸如Hadoop、Hive等名词仅仅处于“听过”的阶段,完全不知道其作用。大数据的概念真的很多,想真正理解必须从实践中慢慢体会,否则则永远只能停留在字面意思。

一、Hadoop

  相信大部分人都听过Hadoop,但是都不知道它到底是干什么的,有什么作用。Hadoop其实可以分为两块:HDFS和MapReduce。

  HDFS:Hadoop Distributed File System,是一个分布式文件系统,它的主要作用是为海量数据提供存储,并提供“流式“访问文件系统中的数据。存储在HDFS中的数据文件是结构化的,比如日志文件。

  MapReduce:看过廖雪峰的Python教程的人应该都对Map和Reduce有一定了解,这里的MapReduce其实就是一样的操作(如果没看过,想了解Map、Reduce过程可以访问《廖雪峰Python教程-map/reduce》)。它主要提供了对海量数据的计算。

二、Hive

  在实践中,数据开发工程师们想对数据进行计算就要写一个MapReduce程序,而这显然需要较大的成本,对于那些不擅长开发的人想简单地查询数据更是抬高了较大的门槛。于是Hive就是为了解决这个问题而生的。它将存储在HDFS中的数据文件(例如日志),通过建立一种映射关系映射成一张数据库表,即Hive表。Hive中有一个模块“metastore”,,一般使用mysql,就是专门用来存储该映射后的数据库表的表结构信息,例如表名、字段名、分区、属性(是否外部表、分区表)等,没有具体的数据。业界也称它为”元数据“。然后真实的数据可以通过load data转换为hive表中的数据,或者通过add partition的方式建立数据映射,从而Hive就提供了一种通过SQL语句查询的方式来计算HDFS中的实际数据文件。

  当一条Hive SQL语句被执行时,Hive有一套映射工具(metastore,一般存放在mysql、derby中),它会对应地将SQL语句转化为MapReduce任务,把sql中的表、字段映射成HDFS中的文件、列,然后去执行对HDFS原始数据文件的计算。

  其实这些内容似乎在所有关于Hadoop、Hive的地方都能看到,字面上理解也并不难。但是如果你是一个真正的初次接触大数据的人的话,我想你会可能也跟我刚开始一样,对它们的理解仅仅是停留在字面。这里举一个例子来解释上面这些字面真正的意思。

  比如我有一个存在HDFS中的access.log日志文件,其内容如下:

假如想统计ip为10.165.152.123的登录记录,如果通过MapReduce去做的话,可能的代码实现方法是:首先解析日志文件,每行去查找是否包含“10.165.152.123”,如果是则再通过正则匹配去取出后面的相关内容(Map);然后对每行的结果进行汇总计算(Reduce)。

  Hive的做法:

  1. 先任意取一条日志,例如10.165.152.123 - - [13/Oct/2016:14:55:06 +0800] "GET /index.html HTTP/1.0" 200 7992 2124,将其中的列映射成字段,如:10.165.152.123对应ip,13/Oct/2016:14:55:06对应time,GET /index.html HTTP/1.0对应method(请求方法),200对应result(返回码),7992对应bytes(字节数),2124对应response_time(响应时间)。

  2. 然后相对应地,选定一个数据库(比如znilog)下,创建一张表名为tbl_accesslog的记录字段名、是否分区(比如按date分区)、属性(是否外部表)的hive表。

  需要注意的是,hive表的实际存储位置也是在hdfs上,比如这种情况下默认的hdfs路径可能就是/warehouser/znilog.db/tbl_accesslog。这个路径就是内部表(也称管理表)的hdfs存储路径。如果是外部表,用户可以自己设定外部表的location。  

3. 对于内部表,我们需要将数据通过load data的方式,将原始数据文件中的数据通过映射的方式,转化为映射后的数据(一般按列存放)存入内部表下。

4. 对于外部表,我们可以直接通过add partition的方式将原始hdfs路径下的数据文件,映射到外部表下。当删除表时,Hive默认存储位置的数据会被删除,但是外部表的数据不会被删除。

   5. 这样我们就有了Hive表,以及Hive表包含的元数据信息(存在metastore中,一般是mysql),Hive表中包含转化后的数据信息,我们可以直接通过Hive SQL语句(select * from tbl_accesslog where ip='10.165.152.123')来获取我们想要的信息。

   

初识Hadoop、Hive的更多相关文章

  1. 初识Hadoop

    第一部分:              初识Hadoop 一.             谁说大象不能跳舞 业务数据越来越多,用关系型数据库来存储和处理数据越来越感觉吃力,一个查询或者一个导出,要执行很长 ...

  2. 初识Hadoop入门介绍

    初识hadoop入门介绍 Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身. < ...

  3. 大数据测试之初识Hadoop

    大数据测试之初识Hadoop POPTEST老李认为测试开发工程师是面向测试的开发,也就是说,写代码就是为完成测试任务服务的,写自动化测试(性能自动化,功能自动化,安全自动化,接口自动化等等)的cas ...

  4. 细细品味大数据--初识hadoop

    初识hadoop 前言 之前在学校的时候一直就想学习大数据方面的技术,包括hadoop和机器学习啊什么的,但是归根结底就是因为自己太懒了,导致没有坚持多长时间,加上一直为offer做准备,所以当时重心 ...

  5. Hive创建表格报【Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException】引发的血案

    在成功启动Hive之后感慨这次终于没有出现Bug了,满怀信心地打了长长的创建表格的命令,结果现实再一次给了我一棒,报了以下的错误Error, return code 1 from org.apache ...

  6. FineReport中hadoop,hive数据库连接解决方案

    1. 描述 Hadoop是个很流行的分布式计算解决方案,Hive是基于hadoop的数据分析工具.一般来说我们对Hive的操作都是通过cli来进行,也就是Linux的控制台,但是,这样做本质上是每个连 ...

  7. hive 使用where条件报错 java.lang.NoSuchMethodError: org.apache.hadoop.hive.ql.ppd.ExprWalkerInfo.getConvertedNode

    hadoop 版本 2.6.0 hive版本 1.1.1 错误: java.lang.NoSuchMethodError: org.apache.hadoop.hive.ql.ppd.ExprWalk ...

  8. hadoop+hive使用中遇到的问题汇总

    问题排查方式  一般的错误,查看错误输出,按照关键字google 异常错误(如namenode.datanode莫名其妙挂了):查看hadoop($HADOOP_HOME/logs)或hive日志 h ...

  9. Hadoop Hive基础sql语法

     目录 Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的 ...

  10. Sqoop是一款开源的工具,主要用于在HADOOP(Hive)与传统的数据库(mysql、oracle...)间进行数据的传递

    http://niuzhenxin.iteye.com/blog/1706203   Sqoop是一款开源的工具,主要用于在HADOOP(Hive)与传统的数据库(mysql.postgresql.. ...

随机推荐

  1. Python编码记录

    字节流和字符串 当使用Python定义一个字符串时,实际会存储一个字节串: "abc"--[97][98][99] python2.x默认会把所有的字符串当做ASCII码来对待,但 ...

  2. 基于Oracle安装Zabbix

    软件版本 Oracle Enterprise Linux 7.1 64bit Oracle Enterprise Edition 12.1.0.2 64bit Zabbix 3.2.1 准备工作 上传 ...

  3. [C#] 简单的 Helper 封装 -- SecurityHelper 安全助手:封装加密算法(MD5、SHA、HMAC、DES、RSA)

    using System; using System.IO; using System.Security.Cryptography; using System.Text; namespace Wen. ...

  4. C# salt+hash 加密

    一.先明确几个基本概念 1.伪随机数:pseudo-random number generators ,简称为:PRNGs,是计算机利用一定的算法来产生的.伪随机数并不是假随机 数,这里的" ...

  5. .NET设计模式访问者模式

    一.访问者模式的定义: 表示一个作用于某对象结构中的各元素的操作.它使你可以在不改变各元素类的前提下定义作用于这些元素的新操作. 二.访问者模式的结构和角色: 1.Visitor 抽象访问者角色,为该 ...

  6. python 数据类型 --- 集合

    1. 注意列表和集合的区别 set 列表表现形式: list_1 = [1,3,4];  集合表现形式:set_1= set() list_1 = [1,2,3,4,23,4,2] print(lis ...

  7. PHP设计模式(一)简单工厂模式 (Simple Factory For PHP)

    最近天气变化无常,身为程序猿的寡人!~终究难耐天气的挑战,病倒了,果然,程序猿还需多保养自己的身体,有句话这么说:一生只有两件事能报复你:不够努力的辜负和过度消耗身体的后患.话不多说,开始吧. 一.什 ...

  8. Spring(三)__aop编程

    aop( aspect oriented programming ) 面向切面编程,是对所有对象或者是一类对象编程 几个重要的概念: 1.切面(aspect):要实现的交叉功能,是系统模块化的一个切面 ...

  9. 如何为你的微信小程序体积瘦身?

    众所周知,微信小程序在发布的时候,对提交的代码有1M大小的限制!所以,如果你正在写一个功能稍微复杂一点的小程序,就必须得时刻小心注意你的代码是不是快触及这个底线了. 在设计一个小程序之初,我们就需要重 ...

  10. hbase集群安装与部署

    1.相关环境 centos7 hadoop2.6.5 zookeeper3.4.9 jdk1.8 hbase1.2.4 本篇文章仅涉及hbase集群的搭建,关于hadoop与zookeeper的相关部 ...