P8684 [蓝桥杯 2019 省 B] 灵能传输 题解
P8684 [蓝桥杯 2019 省 B] 灵能传输 题解
Part 1 提示
- 题目传送门
- 欢迎大家指出错误并私信这个蒟蒻
- 欢迎大家在下方评论区写出自己的疑问(记得
@这个蒟蒻)
Part 2 更新日志
- 2023-06-20 21:46 文章完成
- 2023-07-03 08:57 文章通过审核
- 2023-08-21 18:14 更改了文章格式,使文章看起来更加美观
Part 3 背景
这是这个蒟蒻做了将近 \(4\) 天的题目,所以来写篇题解纪念一下。
Part 4 解析
本题涉及到了 \(3\) 种算法:前缀和,排序以及贪心。
(1)前缀和
本题实际上要求通过某种灵能传输可以使得该序列的最大值最小。而由前缀和可知,当某一个前缀和序列保持有序(或前缀和序列表示的函数单调)时,其 \(\max(s[i]-s[i-1])\) 的最大值可以达到最小。
通过对几个样例的观察我们不难发现:
1.当 \(a[i]>0\) 时,若 \(a[i-1]=a[i-1]+a[i]\),则 \(s[i-1]\) 等于原来的 \(s[i]\)。
2.若 \(a[i]=a[i]-2a[i]\),则原 \(s[i-1]=s[i-1]+s[i]\)。
3.现 \(s[i]=\) 现 \(s[i-1]-a[i]=\) 原 \(s[i]-a[i]=\) 原 \(s[i-1]\)。
这意味着除了 \(s[0]\) 和 \(s[n]\) 以外,\(1\sim n\) 的任何 \(s[i]\) 都可以进行互相交换,从而得到一个有序序列。而 \(a[i]=s[i]-s[i-1]\) 也就意味着可以通过交换 \(s[i]\) 的方式得到灵能传输后的最终结果。
(2)排序
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i], s[i] = s[i - 1] + a[i]);
}
sort(s + 1, s + 1 + n);
当然,如果 \(s[0]\) 和 \(s[n]\) 也可以正常交换,则只需要将整个前缀和序列进行排序,即可直接得到一个单调函数,那么本题的推导到这一步就可以结束了,可以通过直接计算 \(\max(s[i]-s[i-1])\) 的值获得最大值和最小值。但问题就在于 \(s[0]\) 和 \(s[n]\),即最终得到的序列不一定是单调的,所以接下来就要通过一系列操作解决序列不单调的问题。
(3)贪心
通过上述的分析可以得知,想要求出本题的最优解就是使得所求序列尽可能保持单调。通过画图可知,在两个端点无法移动的条件下,在对于整个前缀和序列进行排序时,总能得到一个拥有两个拐点且中间部分保持单调的函数。此时就应该往贪心上思考,即当一条有两个拐点的曲线的重叠部分最小时单调部分最多,而一条曲线符合下列情况时符合要求。
①左端点小于右端点,即 \(s[0]<s[n]\)。在记录 \(s_0\) 和 \(s_n\) 的值时需要进行一次判定,如果得到的左端点比右端点大,那么就将这两个端点交换(尽量保证得到的函数是一个中部递增的单调函数,其目的是将得到的所有函数都变成中部递增函数,这样就可以少算至少一半的数据)。
if (s0 > sn) {
swap(s0, sn);
}
②极小值在极大值左边(刚刚的情况中,要求得到的函数一定是中部递增的,因此不仅需要控制函数中部的递增,还要控制最大值和最小值以使得中部函数递增)。这就要求在后续选点时应遵循 \(s[0]\) 向左取,\(s[n]\) 向右取,因为这样才能取得两边的极值。
因为已经将两个端点确定并保证了两者的顺序,也对前缀和序列进行了升序处理,于是此时得到了一个存放着递增的前缀和序列的有序数组(左右端点的位置已经发生改变,情况①中已经记录了两者位置)。
接下来需要从左端点的位置向左依次取点,从右端点的位置向右依次取点(从左端点向左依次取点并取得前缀和序列的最小值,从右端点向右依次取点并取得前缀和序列的最大值)。此时通过画图可以求得函数为两个端点有拐点且中部有序递增的函数。
int l = 0, r = n - 1;
for (int i = s0; i >= n; i -= 2) {
f[l++] = s[i];
st[i] = true;
}
for (int i = sn; i <= n; i += 2) {
f[r--] = s[i];
st[i] = true;
}
for (int i = 0; i <= n; i++) {
if (st[i] == false) {
f[l++] = s[i];
}
}
因为图像中有两个拐点而且会形成两个重叠部分,所以想要得到最优解,就要使得求得的函数图像中的递增部分尽可能地多,这样拐点处的图像就会尽可能地少,即可保证序列 \(f\) 为重叠部分最小的前缀和序列。
在通过特定规则将所有点都遍历完毕后,此时已经得到最优解的图像(前缀和序列)。最后就是求出所有前缀和表示的灵能值中的最大者(一定为正),该灵能值便是最终答案。
int res = 0;
for (int i = 1; i <= n; i++) {
res = max(res, abs(f[i] - f[i - 1]));
}
\(res\) 即为所求结果。
Part 5 代码
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10;
typedef long long ll;
ll a[N];
ll s[N];
ll f[N];
bool st[N];
int main() {
int t;
scanf("%d", &t);
while (t--) {
int n;
scanf("%d", &n);
s[0] = 0;
for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
s[i] = s[i - 1] + a[i];
}
ll s0 = s[0];
ll sn = s[n];
if (s0 > sn) {
swap(s0, sn);
}
sort(s, s + 1 + n);
for (int i = 0; i <= n; i++) {
if (s0 == s[i]) {
s0 = i;
break;
}
}
for (int i = 0; i <= n; i++) {
if (sn == s[i]) {
sn = i;
break;
}
}
memset(st, false, sizeof st);
int l = 0, r = n;
for (int i = s0; i >= 0; i -= 2) {
f[l++] = s[i];
st[i] = true;
}
for (int i = sn; i <= n; i += 2) {
f[r--] = s[i];
st[i] = true;
}
for (int i = 0; i <= n; i++) {
if (st[i] == false) {
f[l++] = s[i];
}
}
ll res = 0;
for (int i = 1; i <= n; i++) {
res = max(res, abs(f[i] - f[i - 1]));
}
printf("%lld\n", res);
}
return 0;
}
P8684 [蓝桥杯 2019 省 B] 灵能传输 题解的更多相关文章
- 第十届蓝桥杯2019年C/C++ 大学B组省赛试题
2019年第十届蓝桥杯大赛软件类省赛C/C++大学B组 试题 A:组队 本题总分:5分 [问题描述] 作为篮球队教练,你需要从以下名单中选出 1号位至 5号位各一名球员, 组成球队的首发阵容. 每位球 ...
- 第十届蓝桥杯2019年C/C++ 大学A组省赛试题
2019年蓝桥杯第十届软件类省赛 C/C++ 大 学 A 组 试题 A: 平方和 本题总分:5 分 [问题描述] 小明对数位中含有 2.0.1.9 的数字很感兴趣,在 1 到 40 中这样的数包括 1 ...
- 【备考06组01号】第四届蓝桥杯JAVA组A组国赛题解
1.填算式 (1)题目描述 请看下面的算式: (ABCD - EFGH) * XY = 900 每个字母代表一个0~9的数字,不同字母代表不同数字,首位不能为0. 比如 ...
- 2019年第十届蓝桥杯c++A组java/c++组题解
#include<iostream> #include<vector> using namespace std; vector <int > vec; long l ...
- 今日学习——蓝桥杯 2019年 C语言 B组
1.手淦(亲身体验,,,没啥大用,最终还是代码) 2.代码(下面是我看其他博主代码答案能看的懂的....具体的可以直接去下面的网址看) https://blog.csdn.net/qq_4452491 ...
- 2019 蓝桥杯国赛 B 组模拟赛 题解
标签 ok #include<bits/stdc++.h> using namespace std; /* 求阶乘 去除尾部0 每次求阶乘时:结果去除尾0,并对 1e6取余 */ type ...
- 蓝桥杯2019初赛]迷宫(dfs版本)
传送门 大意: 题目的意思还是模板的搜索,不同的是我们要记录路径了,而且是最短字典序最小的路径. 思路: 1.对于字典序最小,也就是说我们要尽量先往下走,然后是左- 这个很简单,因为在dfs中是顺序枚 ...
- P8701 [蓝桥杯 2019 国 B] 第八大奇迹
简要题意 你需要维护一个长度为 \(L\) 的序列 \(a\),初始时全部都是 \(0\),有 \(N\) 个操作,支持: C p x,将 \(a_p\) 修改为 \(x\). Q a b,输出 \( ...
- 2015年蓝桥杯B组C/C++决赛题目
2015年第六届蓝桥杯B组C/C++国赛题目 点击查看2015年第六届蓝桥杯B组C/C++国赛题解 1.积分之迷 小明开了个网上商店,卖风铃.共有3个品牌:A,B,C. 为了促销,每件商品都会 ...
- 2018年蓝桥杯B组C/C++决赛题目
自己的博客排版,自我感觉略好一点. 先放上题目. 点击查看2018年蓝桥杯B组C/C++决赛题目题解 1.换零钞 x星球的钞票的面额只有:100元,5元,2元,1元,共4种. 小明去x星旅游, ...
随机推荐
- C# Collections
1. Generic 1.1 List<T> No need to say this is the most commonly used data structure in C# coll ...
- 1.1 熟悉x64dbg调试器
x64dbg 是一款开源.免费.功能强大的动态反汇编调试器,它能够在Windows平台上进行应用程序的反汇编.调试和分析工作.与传统的调试器如Ollydbg相比,x64dbg调试器的出现填补了Olly ...
- Vue 先初始化子组件再初始化父组件的方法(自定义父子组件mounted执行顺序)
写在前面: 本篇内容内容主要讲述了,在使用 Konva 进行开发过程中遇到的一些问题.(既然是组件加载顺序,主要牵扯到的就是,父子组件的关系,父子组件的生命周期) 众所周知,Vue中父子组件生命周期的 ...
- 十大功能特性,助力开发者玩转API Explorer
摘要:华为云API Explorer为开发者提供一站式API解决方案统一平台,集成华为云服务所有开放API,支持全量快速检索.可视化调试.帮助文档.代码示例等能力,帮助开发者快速查找.学习API和使用 ...
- 2023-07-18:给你一个正整数数组 nums,请你移除 最短 子数组(可以为 空), 使得剩余元素的 和 能被 p 整除。 不允许 将整个数组都移除。 请你返回你需要移除的最短子数组的长度,如果
2023-07-18:给你一个正整数数组 nums,请你移除 最短 子数组(可以为 空), 使得剩余元素的 和 能被 p 整除. 不允许 将整个数组都移除. 请你返回你需要移除的最短子数组的长度,如果 ...
- win10使用Docker Desktop启动mysql报错:Error response from daemon: Ports are not available: exposing port TCP 0.0.0.0:3306 -> 0.0.0.0:0: listen tcp 0.0.0.0:3306:
问题描述 今天上班用wind10电脑启动Docker Desktop使用MySQL,突然间报了一个错,错误如下: Error response from daemon: Ports are not a ...
- quarkus实战之三:开发模式(Development mode)
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 前文咱们曾提到过几种启动方式,有一种用mav ...
- 2022-1-10 控件学习2 Button、CheckBox、RadioButton、PasswordBox、Image、ToolTip
Button 设置带图片的按钮: 设置button按钮通用类型: CheckBox IsChecked设置是否选中 RadioButton 使用GroupName这 ...
- NOIP2022 题解
终于有机会补NOIP的题了 T1 考虑枚举 C 与 F 的纵列 考虑预处理出每个点最左边和最下边可以延伸到哪 之后枚举列,然后对行做类似于扫描线的操作,统计有多少可行的 "第一横行" ...
- [k8s]使用私有harbor镜像源
前言 在node上手动执行命令可以正常从harbor拉取镜像,但是用k8s不行,使用kubectl describe pods xxx 提示未授权 unauthorized to access rep ...