0 导引

1 整体通信结构

订阅-发布结构实现一对多的通信模式,消息发布者可以将消息推送到多个订阅者。基于共享内存的订阅-发布通信结构如下图所示:

每一对订阅者和发布者之间通过队列联系,队列元素为发送数据的描述。发送者往队列中推入描述,订阅者取出描述,据此从共享内存获取真正的消息数据。队列中为什么不直接存放消息数据本身呢?原因一则是消息的长度是不确定的,二则是一对多通信结果下,直接将消息存放在队列中更浪费空间。

2 RelativePointer

上节说到队列存放消息存放位置的描述,可以是地址吗?

2.1 原理

使用共享内存内存前,需要映射到进程的虚拟地址空间,如下图所示:

不同进程映射的区域不同,iceoryx使用数字唯一标识共享内存。实际上,iceoryx每个应用进程维护一张注册表,保存各个共享内存的起止地址,这里的数字就是共享内存在注册表中的索引。为了定位某个Chunk,还需要该Chunk相对共享内存首地址的偏移量。共享内存索引和偏移就定义了RelativePointer——用于定位共享内存的指定位置,相关代码如下所示:

template <typename T>
class RelativePointer final
{
public:
using ptr_t = T*;
using offset_t = std::uintptr_t; explicit RelativePointer(ptr_t const ptr) noexcept;
T* computeRawPtr() const noexcept; private:
segment_id_underlying_t m_id{NULL_POINTER_ID};
offset_t m_offset{NULL_POINTER_OFFSET};
};

上述代码中,除了共享内存索引和偏移外,还加了两个函数:

  • 构造函数,通过普通指针构造RelativePointer对象。
  • 根据RelativePointer获取其所代表的普通指针。

2.2 PointerRepository

上节我们引入了注册表的概念,了解了其作用,本节具体看看其实现。

constexpr uint64_t MAX_POINTER_REPO_CAPACITY{10000U};
template <typename id_t, typename ptr_t, uint64_t CAPACITY = MAX_POINTER_REPO_CAPACITY>
class PointerRepository final
{
private:
struct Info
{
ptr_t basePtr{nullptr};
ptr_t endPtr{nullptr};
}; public:
bool registerPtrWithId(const id_t id, const ptr_t ptr, const uint64_t size) noexcept;
cxx::optional<id_t> registerPtr(const ptr_t ptr, const uint64_t size = 0U) noexcept; private:
iox::cxx::vector<Info, CAPACITY> m_info;
uint64_t m_maxRegistered{0U};
};

m_info就是注册表,元素类型为Info,存放共享内存的起始地址和结束地址。这里,我们贴了两个注册指针的函数——registerPtrWithIdregisterPtr——分别用于打开共享内存和创建共享内存时调用。

2.3 构造函数

构造函数根据普通指针构造相对指针实例,其代码实现如下:

职责:

RelativePointer实例的构造。

入参:

ptr:普通指针。

template <typename T>
inline RelativePointer<T>::RelativePointer(ptr_t const ptr) noexcept
: RelativePointer([this, ptr]() noexcept -> RelativePointer {
const segment_id_t id{this->searchId(ptr)};
const offset_t offset{this->getOffset(id, ptr)};
return RelativePointer{offset, id};
}())
{
} template <typename T>
inline segment_id_underlying_t RelativePointer<T>::searchId(ptr_t const ptr) noexcept
{
if (ptr == nullptr)
{
return NULL_POINTER_ID;
}
return getRepository().searchId(ptr);
} template <typename id_t, typename ptr_t, uint64_t CAPACITY>
inline id_t PointerRepository<id_t, ptr_t, CAPACITY>::searchId(const ptr_t ptr) const noexcept
{
for (id_t id{1U}; id <= m_maxRegistered; ++id)
{
if ((ptr >= m_info[id].basePtr) && (ptr <= m_info[id].endPtr))
{
return id;
}
} return RAW_POINTER_BEHAVIOUR_ID;
} template <typename T>
inline typename RelativePointer<T>::offset_t RelativePointer<T>::getOffset(const segment_id_t id,
ptr_t const ptr) noexcept
{
if (static_cast<segment_id_underlying_t>(id) == NULL_POINTER_ID)
{
return NULL_POINTER_OFFSET;
}
const auto* const basePtr = getBasePtr(id);
return reinterpret_cast<offset_t>(ptr) - reinterpret_cast<offset_t>(basePtr);
} template <typename T>
inline T* RelativePointer<T>::getBasePtr(const segment_id_t id) noexcept
{
return static_cast<ptr_t>(getRepository().getBasePtr(static_cast<segment_id_underlying_t>(id)));
} template <typename id_t, typename ptr_t, uint64_t CAPACITY>
inline ptr_t PointerRepository<id_t, ptr_t, CAPACITY>::getBasePtr(const id_t id) const noexcept
{
if ((id <= MAX_ID) && (id >= MIN_ID))
{
return m_info[id].basePtr;
} return nullptr;
}

逐段代码分析:

  • LINE 01 ~ LINE 09: 构造函数,调用成员函数searchIdgetOffset计算该指针在注册表中的索引id和偏移,以此初始化两个成员。

  • LINE 11 ~ LINE 33: 这部分就是遍历注册表中所有共享内存,找到包含给定地址的共享内存区域的,返回其id。

  • LINE 35 ~ LINE 62: 从注册表中找出指定id共享内存首地址,入参指针减去首地址,计算得到偏移。

2.4 get函数

职责:

获取RelativePointer实例对应的普通指针。

返回:

普通指针。

template <typename T>
inline T* RelativePointer<T>::get() const noexcept
{
return static_cast<ptr_t>(computeRawPtr());
} template <typename T>
inline T* RelativePointer<T>::computeRawPtr() const noexcept
{
return getPtr(segment_id_t{m_id}, m_offset);
} template <typename T>
inline T* RelativePointer<T>::getPtr(const segment_id_t id, const offset_t offset) noexcept
{
if (offset == NULL_POINTER_OFFSET)
{
return nullptr;
}
const auto* const basePtr = getBasePtr(id);
return reinterpret_cast<ptr_t>(offset + reinterpret_cast<offset_t>(basePtr));
}

整体代码分析:

上面代码逻辑和2.3节类似,通过id从注册表中获取共享内存首地址,加上偏移量得到普通指针。

3 ShmSafeUnmanagedChunk

上一篇文章中,我们介绍了SharedChunk,用于管理共享内存。本节将介绍ShmSafeUnmanagedChunk,用于基于共享内存的通信。可以认为是从两个角度描述Chunk

3.1 队列数据

第1节中的队列中存放的描述数据结构就是ShmSafeUnmanagedChunk,具体代码(去除和本节无关的代码)如下:

struct ChunkQueueData : public LockingPolicy
{
cxx::VariantQueue<mepoo::ShmSafeUnmanagedChunk, MAX_CAPACITY> m_queue;
};

3.2 RelativePointerData

ShmSafeUnmanagedChunk只有唯一的成员变量m_chunkManagement,其类型为RelativePointerData

class ShmSafeUnmanagedChunk
{
private:
memory::RelativePointerData m_chunkManagement;
};

RelativePointerData的成员就是一个整数,如下:

class RelativePointerData
{
private:
uint64_t m_idAndOffset{LOGICAL_NULLPTR};
};

但是第2节我们知道,描述消息数据在共享内存中的位置,我们需要注册表中的索引id和偏移offset,一个整数怎么够呢?实际上,这个整数按位分成两部分,前48位表示offset,后16位表示id,如下图所示:

据此,我们来看求取id和offset的实现:

using identifier_t = uint16_t;
static constexpr uint64_t ID_BIT_SIZE{16U};
static constexpr identifier_t ID_RANGE{std::numeric_limits<identifier_t>::max()};
static constexpr offset_t OFFSET_RANGE{(1ULL << 48U) - 1U}; RelativePointerData::identifier_t RelativePointerData::id() const noexcept
{
return static_cast<identifier_t>(m_idAndOffset & ID_RANGE);
} RelativePointerData::offset_t RelativePointerData::offset() const noexcept
{
return (m_idAndOffset >> ID_BIT_SIZE) & OFFSET_RANGE;
}

都是一些位运算,其中ID_RANGEOFFSET_RANGE分别为后16为和48位为1的数字,取名为ID_MASKOFFSET_MASK(掩码)更合适。

3.3 构造函数

发送数据的核心就是将SharedChunk转化为ShmSafeUnmanagedChunk,推入队列容器中。这就是ShmSafeUnmanagedChunk的构造函数的职责。

职责:

使用SharedChunk实例构造ShmSafeUnmanagedChunk实例。

入参:

ShmSafeUnmanagedChunk::ShmSafeUnmanagedChunk(mepoo::SharedChunk chunk) noexcept
{
if (chunk)
{
memory::RelativePointer<mepoo::ChunkManagement> ptr{chunk.release()};
auto id = ptr.getId();
auto offset = ptr.getOffset();
m_chunkManagement =
memory::RelativePointerData(static_cast<memory::RelativePointerData::identifier_t>(id), offset);
}
}

整体代码分析:

上述代码就是使用第2节中介绍的构造函数,根据普通指针构造RelativePointer,然后得到id和offset,以此构造RelativePointerData

static constexpr identifier_t MAX_VALID_ID{ID_RANGE - 1U};
static constexpr offset_t MAX_VALID_OFFSET{OFFSET_RANGE - 1U}; constexpr RelativePointerData::RelativePointerData(identifier_t id, offset_t offset) noexcept
: m_idAndOffset(static_cast<uint64_t>(id) | (offset << ID_BIT_SIZE))
{
if ((id > MAX_VALID_ID) || (offset > MAX_VALID_OFFSET))
{
m_idAndOffset = LOGICAL_NULLPTR;
}
}

结合3.2节对RelativePointerData的介绍,上述构造函数是显然的。

3.4 releaseToSharedChunk

接收端需要将ShmSafeUnmanagedChunk转为SharedChunk,这就是releaseToSharedChunk的职责。

职责:

通过ShmSafeUnmanagedChunk构造SharedChunk实例。

返回:

SharedChunk实例。

SharedChunk ShmSafeUnmanagedChunk::releaseToSharedChunk() noexcept
{
if (m_chunkManagement.isLogicalNullptr())
{
return SharedChunk();
}
auto chunkMgmt = memory::RelativePointer<mepoo::ChunkManagement>(m_chunkManagement.offset(),
memory::segment_id_t{m_chunkManagement.id()});
m_chunkManagement.reset();
return SharedChunk(chunkMgmt.get());
}

根据id和offset构造RelativePointer实例,然后通过2.4节介绍的get方法获得指向ChunkManagement指针,据此构造SharedChunk实例(SharedChunk唯一的成员数据就是ChunkManagement指针,见:SharedChunk的数据成员)。

4 小结

本文介绍基于共享内存通信的主要数据结构,下文我们将介绍数据发送函数和接收函数的实现。

iceoryx源码阅读(三)——共享内存通信(一)的更多相关文章

  1. 26 BasicUsageEnvironment基本使用环境——Live555源码阅读(三)UsageEnvironment

    26 BasicUsageEnvironment基本使用环境--Live555源码阅读(三)UsageEnvironment 26 BasicUsageEnvironment基本使用环境--Live5 ...

  2. 25 BasicUsageEnvironment0基本使用环境基类——Live555源码阅读(三)UsageEnvironment

    25 BasicUsageEnvironment0基本使用环境基类——Live555源码阅读(三)UsageEnvironment 25 BasicUsageEnvironment0基本使用环境基类— ...

  3. 24 UsageEnvironment使用环境抽象基类——Live555源码阅读(三)UsageEnvironment

    24 UsageEnvironment使用环境抽象基类——Live555源码阅读(三)UsageEnvironment 24 UsageEnvironment使用环境抽象基类——Live555源码阅读 ...

  4. SparkSQL(源码阅读三)

    额,没忍住,想完全了解sparksql,毕竟一直在用嘛,想一次性搞清楚它,所以今天再多看点好了~ 曾几何时,有一个叫做shark的东西,它改了hive的源码...突然有一天,spark Sql突然出现 ...

  5. Qt源码阅读(三) 对象树管理

    对象树管理 个人经验总结,如有错误或遗漏,欢迎各位大佬指正 @ 目录 对象树管理 设置父对象的作用 设置父对象(setParent) 完整源码 片段分析 对象的删除 夹带私货时间 设置父对象的作用 众 ...

  6. CoreCLR源码探索(三) GC内存分配器的内部实现

    在前一篇中我讲解了new是怎么工作的, 但是却一笔跳过了内存分配相关的部分. 在这一篇中我将详细讲解GC内存分配器的内部实现. 在看这一篇之前请必须先看完微软BOTR文档中的"Garbage ...

  7. SpringMVC源码阅读(三)

    先理一下Bean的初始化路线 org.springframework.beans.factory.support.AbstractBeanDefinitionReader public int loa ...

  8. JDK源码阅读(三) Collection<T>接口,Iterable<T>接口

    package java.util; public interface Collection<E> extends Iterable<E> { //返回该集合中元素的数量 in ...

  9. 23 使用环境 UsageEnvironment——Live555源码阅读

    23 使用环境 UsageEnvironment——Live555源码阅读(三)UsageEnvironment 23 使用环境 UsageEnvironment——Live555源码阅读(三)Usa ...

  10. Struts2源码阅读(一)_Struts2框架流程概述

    1. Struts2架构图  当外部的httpservletrequest到来时 ,初始到了servlet容器(所以虽然Servlet和Action是解耦合的,但是Action依旧能够通过httpse ...

随机推荐

  1. C语言 05 变量与常量

    变量 变量就像在数学中学习的 x,y 一样,可以直接声明一个变量,并利用这些变量进行基本的运算,声明变量的格式为: 数据类型 变量名称 = 初始值;(其中初始值可以不用在定义变量时设定) = 是赋值操 ...

  2. mybatis复习(三)映射文件属性详解和动态SQL

    mybatis映射文件属性详解和动态SQL笔记 <SELECT> id = "" 唯一标识parameterType = "" 表示传入SQL语句的 ...

  3. JMeter接口性能测试工具

    博客地址:https://blog.csdn.net/lovesoo/article/details/78579547

  4. sql 语句系列(计算一个季度的开始日期和结束日期)[八百章之第二十三章]

    前言 很多时候,我们进行数据库查询的时候,查询一个季度的财务报表的时候. 比如说查询2020年第一季度的单子,可能传入后台的就是20201,表示的就是20201第一季度,这时候我们要转换为日期. se ...

  5. 鸿蒙HarmonyOS实战-ArkUI动画(布局更新动画)

    前言 动画是一种通过连续展示一系列静止的图像(称为帧)来创造出运动效果的艺术形式.它可以以手绘.计算机生成或其他各种形式呈现.在动画中,每一帧都具有微小的变化,当这些帧被快速播放时,人眼会产生视觉上的 ...

  6. 力扣326(java)-3的幂(简单)

    题目: 给定一个整数,写一个函数来判断它是否是 3 的幂次方.如果是,返回 true :否则,返回 false . 整数 n 是 3 的幂次方需满足:存在整数 x 使得 n == 3x 示例 1: 输 ...

  7. HarmonyOS NEXT 实战开发—Grid和List内拖拽交换子组件位置

    介绍 本示例分别通过onItemDrop()和onDrop()回调,实现子组件在Grid和List中的子组件位置交换. 效果图预览 使用说明: 拖拽Grid中子组件,到目标Grid子组件位置,进行两者 ...

  8. DTCC 2020 | 阿里云程实:云原生时代的数据库管理

    简介: 随着云原生技术的不断发展,数据库也逐渐进入了云原生时代.在云原生时代,如何高效.安全且稳定地管理云上与云下的数据库成为摆在企业面前的一大难题.在第十一届中国数据库技术大会(DTCC2020)上 ...

  9. 使用 Arthas 排查 SpringBoot 诡异耗时的 Bug

    简介: 公司有个渠道系统,专门对接三方渠道使用,没有什么业务逻辑,主要是转换报文和参数校验之类的工作,起着一个承上启下的作用.最近,在优化接口的响应时间,优化了代码之后,但是时间还是达不到要求:有一个 ...

  10. 十年再出发,Dubbo 3.0 Preview 即将在 3 月发布

    ​简介:随着Dubbo和HSF的整合,我们在整个开源的体系中更多地去展现了 HSF 的能力,能够让更多的人通过使用 Dubbo 像阿里巴巴之前使用 HSF 一样更好的构建服务化的系统. 2011 年, ...