上一章我们介绍了基于Prompt范式的工具调用方案,这一章介绍基于模型微调,支持任意多工具组合调用,复杂调用的方案。多工具调用核心需要解决3个问题,在哪个位置进行工具调用(where), 从众多工具中选择哪一个(Which), 工具的输入是什么(What)。Where + Which + What,我称之为3W原则,3H它兄弟哈哈哈哈~

其实如何教大模型使用工具,和教人类使用工具没啥区别。就像上周末我想给我妈买的可以防弹,超重的岩板餐桌按个滑轮需要使用电钻,那我学习使用电钻的途径无非有三种

  1. 基于历史经验:我之前都是手动的没用过电动的,我凭借自信直接上手结果拧歪了......对应到LLM其实就是本章要提到的工具微调,我们让模型先学习在在不同的场景使用什么工具,如何使用,再利用大模型的迁移泛化能力泛化到更多的场景。
  2. 从工具说明书中学习:我去翻了翻说明书,奈何写的太抽象没看懂......对应到LLM简单版的就是上一章的zero-shot prompt方案,告诉大模型工具的使用场景和用法;升级版就是之后会提到的优化方案,我们可以动态召回工具的完整说明书和使用范例作为上文输入模型
  3. 通过观察他人使用工具来学习:最终我打开小红书看短视频学习了下,一点就通,于是我拥有了可丝滑移动的防弹餐桌!对应到LLM简单版就是上一章介绍的few-shot prompt方案,我们让LLM看到在其他场景它是如何使用工具的;升级版就是之后会提到的动态few-shot prompt的方案。

下面我们看下通过微调为模型注入工具使用经验的两个方案:Toolformer和Gorilla

Toolformer

  • TALM: Tool Augmented Language Models
  • Toolformer: Language Models Can Teach Themselves to Use Tools
  • 填充式工具使用 + InContext制造自监督样本

Toolformer是工具调用领域的前辈,使用LM监督微调得到可以进行Inline工具调用的模型。解码时,模型会在恰当的位置生成API调用的请求,并中止解码,去调用API得到返回值,把返回值拼接到"->"字符之后,再继续模型解码,如下

Toolformer的创新主要在API调用的样本构造,因此我们先来看下样本构造的部分

样本

Toolformer单一API的样本构造主要包含以下3个步骤

  • Sampling API

以QA API为例,作者会先编写几个样本作为In-Context,得到以下的FewShot指令样本

然后针对新的长度为N的输入文本,作者会计算每个位置得到<API>前缀的条件解码概率,并保留超过阈值的TopK个最优可能出现<API>的位置。然后每个位置,基于上文,让模型随机解码m次生成m个候选的API调用请求。这样我们就得到了候选样本集,每一段文本,最多有K个可能进行工具调用的位置,且每个位置有至多m个候选请求{c1,...cm}。

  • Executing API Calls

执行以上得到的候选请求,每个请求得到一个对应的返回值{r1,....rm}。 可以是计算器的结果,维基百科的搜索返回等等

  • Filtering API Calls

最后是过滤筛选,原理是好的工具调用样本,应该会让工具调用位置后面的文本解码概率提高,Perplexity降低。因此作者计算了在工具调用位置之后,所有token的加权条件解码概率。

以上加权的权重计算如下,离工具调用位置越远权重越小

条件解码概率的条件Z,分别是[工具调用+返回值],[工具调用+无返回值],[无工具调用],这三者中Loss较小的一个,过滤方案是[工具调用+工具返回值]的Loss降幅超过阈值,则保留该样本

整体量级上,1个API生成了25K左右的样本用于微调,样本长度1024

微调

使用以上样本生成方案得到多API调用的样本集混合后得到增强训练样本。样本的构建方式是在原始文本中直接插入API调用的语句\(x_{1:i-1},e(c_i,r_i),x_{i:n}\),如下

The Nile has an approximate length of QA(What is the approximate length of the Nile?)->6,853 km 6,853 kilometers, the White Nile being its main source

这样通过微调,模型会学习到在什么位置使用什么样的工具,以及工具的请求输入。同时和解码的格式保持一致,后文会依赖API调用结果进行解码。微调使用了GPT-J模型,Batch=128, lr=1e-5,warmup=10%,训练了2K step,常规的LM Loss.

总结

Toolformer的创新主要在使用模型的Few-shot理解能力,使用少量的人工标注样本制造大量的自监督样本。这样Tooformer理论上可以支持任意的API工具。但Toolformer有一些局限性

  1. 工具独立:论文中每个API调用的样本是独立构造的,工具之间没有交互,且同一工具的多次调用之间也是独立,不依赖上文的调用返回。
  2. 常规解码:没有引入思维链推理,限制了最终效果

Gorilla

  • HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace
  • TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs
  • Gorilla:Large Language Model Connected with Massive APIs
  • https://github.com/ShishirPatil/gorilla

Gorilla在HuggingGPT,TaskMatrix.AI这两个API调用的前辈的基础上,加入了指令微调来提升API调用效果。Gorilla支持TorchHub,TensorflowHub,Huggingface总共1645个API,且可以泛化到新的API上。

样本

Gorilla使用Self-Instruct来构建指令样本,用的是GPT4模型。构建方案是以上3个API Hub, 每个Hub各人工编写6个指令样本。每一轮随机从6个样本中采样3个作为Few-Shot,并通过指令让GPT4随机生成10个真实世界的使用case,总共生成16450个指令样本,生成的指令样本如下

同时Gorilla加入了Retriever-Aware,也就是在以上的指令样本中,指令后面会拼接上API的使用说明:"Use this API documentation for reference: <retrieved_API_doc_JSON>"

这样在推理阶段,会先根据用户的指令召回最相关、最新的API使用说明。降低模型幻觉的同时,使得模型有更好的泛化性,可以适应全新的API接口,或者已有API接口的参数变化。

微调&推理

微调的部分比较常规就是在LLama-7B模型上,使用以下参数在8*A100(40G)进行指令微调。

在推理阶段会同样加入API Retriever根据用户的指令召回最相关的API使用说明,和用户输入拼接,喂进模型推理。召回方案作者尝试了BM25和GPT的Embedding,不过不同召回方案的效果和API本身相关,没有谁一定更好这一说。

效果上微调后7B的LLama模型使用GPT Embedding召回工具说明,在工具调用上的准确率可以显著超越GPT3.5使用Prompt方案的调用效果

总结

对比上一章基于Prompt的方案Self Ask,ReAct和这一章基于微调的方案Toolformer,Gorilla,指令微调的方案有以下优势

  1. planning效果更好:微调方案比Prompt方案在复杂问题规划上效果更好,尤其适合本身In-Context能力有限的小模型
  2. 工具调用准确率更高:针对复杂工具调用的准确率更高
  3. 不受模型迭代影响:GPT3.5->GPT4的升级,让不少基于Prompt指令的应用们需要集体进行prompt调整,因为模型指令变了.......以及不同模型之间的指令或有不同。但微调方案不受这一点影响,因为指令微调本身就是对齐的过程,因此更robust

缺点自然是没有开箱即用的Prompt方案灵活,所以不妨用prompt方案来进行前期测试,后期用微调来提升效果。

但其实不论是prompt方案还是微调方案,其实都是LLM Agent应用中的工具调用规划这一个子模块,要真正搭建可以落地的大模型应用,需要更系统的整体设计,这块我们放在下一章说~

想看更全的大模型相关论文梳理·微调及预训练数据和框架·AIGC应用,移步Github >> DecryPrompt

解密Prompt系列13. LLM Agent-指令微调方案: Toolformer & Gorilla的更多相关文章

  1. 解密Prompt系列6. lora指令微调扣细节-请冷静,1个小时真不够~

    上一章介绍了如何基于APE+SELF自动化构建指令微调样本.这一章咱就把微调跑起来,主要介绍以Lora为首的低参数微调原理,环境配置,微调代码,以及大模型训练中显存和耗时优化的相关技术细节 标题这样写 ...

  2. 解密prompt系列5. APE+SELF=自动化指令集构建代码实现

    上一章我们介绍了不同的指令微调方案, 这一章我们介绍如何降低指令数据集的人工标注成本!这样每个人都可以构建自己的专属指令集, 哈哈当然我也在造数据集进行时~ 介绍两种方案SELF Instruct和A ...

  3. 解密Prompt系列3. 冻结LM微调Prompt: Prefix-Tuning & Prompt-Tuning & P-Tuning

    这一章我们介绍在下游任务微调中固定LM参数,只微调Prompt的相关模型.这类模型的优势很直观就是微调的参数量小,能大幅降低LLM的微调参数量,是轻量级的微调替代品.和前两章微调LM和全部冻结的pro ...

  4. 解密Prompt系列2. 冻结Prompt微调LM: T5 & PET & LM-BFF

    这一章我们介绍固定prompt微调LM的相关模型,他们的特点都是针对不同的下游任务设计不同的prompt模板,在微调过程中固定模板对预训练模型进行微调.以下按时间顺序介绍,支持任意NLP任务的T5,针 ...

  5. 解密Prompt系列4. 升级Instruction Tuning:Flan/T0/InstructGPT/TKInstruct

    这一章我们聊聊指令微调,指令微调和前3章介绍的prompt有什么关系呢?哈哈只要你细品,你就会发现大家对prompt和instruction的定义存在些出入,部分认为instruction是promp ...

  6. .NET Core加解密实战系列之——使用BouncyCastle制作p12(.pfx)数字证书

    简介 加解密现状,编写此系列文章的背景: 需要考虑系统环境兼容性问题(Linux.Windows) 语言互通问题(如C#.Java等)(加解密本质上没有语言之分,所以原则上不存在互通性问题) 网上资料 ...

  7. Java 加解密技术系列文章

    Java 加解密技术系列之 总结 Java 加解密技术系列之 DH Java 加解密技术系列之 RSA Java 加解密技术系列之 PBE Java 加解密技术系列之 AES Java 加解密技术系列 ...

  8. Java 集合系列 13 WeakHashMap

    java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...

  9. 【Xamarin开发 Android 系列 13】 应用打包部署

    原文:[Xamarin开发 Android 系列 13] 应用打包部署 开始倒叙咯................ 先更新大宝部署吧,这个章节比较的Easy,童鞋们不用费脑筋.点解?从界面上填写几个参 ...

  10. ASP.NET MVC+EF框架+EasyUI实现权限管理系列(13)-权限设计

    原文:ASP.NET MVC+EF框架+EasyUI实现权限管理系列(13)-权限设计 ASP.NET MVC+EF框架+EasyUI实现权限管系列 (开篇)   (1):框架搭建    (2):数据 ...

随机推荐

  1. 2022-09-19:给定字符串 S and T,找出 S 中最短的(连续)子串 W ,使得 T 是 W 的 子序列 。 如果 S 中没有窗口可以包含 T 中的所有字符,返回空字符串 ““。 如果有不

    2022-09-19:给定字符串 S and T,找出 S 中最短的(连续)子串 W ,使得 T 是 W 的 子序列 . 如果 S 中没有窗口可以包含 T 中的所有字符,返回空字符串 "&q ...

  2. 【重学C++】02 脱离指针陷阱:深入浅出 C++ 智能指针

    文章首发 [重学C++]02 脱离指针陷阱:深入浅出 C++ 智能指针 前言 大家好,今天是[重学C++]系列的第二讲,我们来聊聊C++的智能指针. 为什么需要智能指针 在上一讲<01 C++如 ...

  3. 使用js闭包封装一个原生的模态框

    现在都是用的是人家封装的框架什么的,但是对于底层的了解也是必须的,不然就无法提升,下面分享一个2 years ago 自己封装的一个提示框 样式很简单(适用于任何分辨率) 具体代码如下 /** * 该 ...

  4. 代码随想录算法训练营Day35 贪心算法

    代码随想录算法训练营 代码随想录算法训练营Day35 贪心算法| 860.柠檬水找零 406.根据身高重建队列 452. 用最少数量的箭引爆气球 860.柠檬水找零 题目链接:860.柠檬水找零 在柠 ...

  5. [MAUI程序设计] 用Handler实现自定义跨平台控件

    @ 目录 Handler 与Xamarin.Forms实现的区别 为什么要用Handler代替Renderer 解耦 生命周期管理 更细粒度的控制 用Effect来实现呢? 自定义手势监听控件 在各平 ...

  6. 深入探究for...range语句

    1. 引言 在Go语言中,我们经常需要对数据集合进行遍历操作.对于数组来说,使用for语句可以很方便地完成遍历.然而,当我们面对其他数据类型,如map.string 和 channel 时,使用普通的 ...

  7. 22.04.1 wine8.10 完美安装同花顺最新版THS_9.20.40_20230613

    Linux luma 5.19.0-45-generic #46~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 7 15:06:04 UTC 20 x86_64 ...

  8. 前端基于 radio 增强单选框组件

    前端基于radio增强单选框组件, 下载完整代码请访问uni-app插件市场地址:https://ext.dcloud.net.cn/plugin?id=12977 效果图如下:       # ## ...

  9. The content of element type “web-app“ must match 解决方法

    报错原因 ‍ 问题描述 : 在创建 SpringMVC 时 , 选用 idea 的 webapp 模板来创建 , xml 配置文件中进行配置时发现提示警告 警告如下: ‍ ​ ​ 这错误大概的意思就是 ...

  10. Java 递归的小练习,累加、累乘、斐波那契兔子、文件递归

    递归的小练习, public static void main(String[] args) { System.out.println(sum(10)); System.out.println(mul ...