Balanced Lineup

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, 
N and 
Q

Lines 2..
N+1: Line 
i+1 contains a single integer that is the height of cow 
i 

Lines 
N+2..
N+
Q+1: Two integers 
A and 
B (1 ≤ 
A ≤ 
B ≤ 
N), representing the range of cows from 
A to 
B inclusive.

Output

Lines 1..
Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

线段树,也叫区间树(interval tree),它在各个节点保存一条线段(即子数组)。设数列A 包含
N 个元素,则线段树的根节点表示整个区间A[1;N],左孩子表示区间A[1; (1 + N)/2],右孩子表
示区间A[(1 + N)/2 + 1;N],不断递归,直到叶子节点,叶子节点只包含一个元素。
线段树有如下特征:
• 线段树是一棵完全二叉树
• 线段树的深度不超过logL, L 是区间的长度
• 线段树把一个长度为L 的区间分成不超过2 logL 条线段
线段树的基本操作有构造线段树、区间查询和区间修改。
线段树通常用于解决和区间统计有关的问题。比如某些数据可以按区间进行划分,按区间动态
进行修改,而且还需要按区间多次进行查询,那么使用线段树可以达到较快的查询速度。
用线段树解题,关键是要想清楚每个节点要存哪些信息(当然区间起点和终点,以及左右孩子
指针是必须的���,以及这些信息如何高效查询,更新。不要一更新就更新到叶子节点,那样更新操作
的效率最坏有可能O(N) 的。

用数组存储完全二叉树,可以使速度更快~

#include <iostream>
#include <vector>
#include <algorithm>
#include<map>
#include<vector>
#include<queue>
#include<string>
#include<set>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstring>
//#pragma warning(disable:4996)
using namespace std;
#define MAXN 50001
#define INF 0x7fffffff;
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define L(a) ((a)<<1)
#define R(a) (((a)<<1)+1)
//数组存储线段树
typedef struct node_t {
int left, right;
int maxx, minx;
} node_t;
int a[MAXN];
node_t node[MAXN * 4];
int minx, maxx;
void init() {
memset(node, 0, sizeof(node));
}
//以t为根节点,为区间l,r建立线段树
void build(int t, int l, int r) {
node[t].left = l, node[t].right = r;
if (l == r) {
node[t].maxx = node[t].minx = a[l];
return;
}
const int mid = (l + r) / 2;
build(L(t), l, mid);
build(R(t), mid + 1, r);
node[t].maxx = max(node[L(t)].maxx, node[R(t)].maxx);
node[t].minx = min(node[L(t)].minx, node[R(t)].minx);
}
void query(int t, int l, int r) {
if (t > 200000) {
minx = maxx = 0;
return;
}
if (node[t].left == l&&node[t].right == r) {
if (maxx < node[t].maxx)
maxx = node[t].maxx;
if (minx > node[t].minx)
minx = node[t].minx;
return;
}
const int mid = (node[t].left + node[t].right) / 2;
if (l > mid) {
query(R(t), l, r);
}
else if (r <= mid) {
query(L(t), l, r);
}
else {
query(L(t), l, mid);
query(R(t), mid + 1, r);
}
}
int main()
{
//freopen("s.txt", "r", stdin);
int n, q, i;
scanf("%d%d", &n, &q);
for (i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
}
init();
build(1, 1, n);
while (q--) {
int a, b;
scanf("%d%d", &a, &b);
maxx = 0;
minx = INF;
query(1, a, b);
printf("%d\n", maxx - minx);
}
return 0;
}

初级线段树 POJ3264的更多相关文章

  1. poj3264(简单线段树)

    题目链接:https://vjudge.net/problem/POJ-3264 题意:线段树简单应用题,区间查询最大值和最小值的差. 思路:用线段树维护区间的最大值和最小值即可. AC代码: #in ...

  2. Balanced Lineup poj3264 线段树

    Balanced Lineup poj3264 线段树 题意 一串数,求出某个区间的最大值和最小值之间的差 解题思路 使用线段树,来维护最大值和最小值,使用两个查询函数,一个查区间最大值,一个查区间最 ...

  3. 几道简单的线段树入门题 POJ3264&&POJ3468&&POJ2777

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 40687   Accepted: 19137 ...

  4. [POJ3264]Balanced Lineup(线段树,区间最值差)

    题目链接:http://poj.org/problem?id=3264 一排牛按1~n标号记录重量,问每个区间最重的和最轻的差值. 线段树维护当前节点下属叶节点的两个最值,查询后作差即可. #incl ...

  5. POJ3264——Balanced Lineup(线段树)

    本文出自:http://blog.csdn.net/svitter 题意:在1~200,000个数中.取一段区间.然后在区间中找出最大的数和最小的数字.求这两个数字的差. 分析:按区间取值,非常明显使 ...

  6. poj3264(线段树区间求最值)

    题目连接:http://poj.org/problem?id=3264 题意:给定Q(1<=Q<=200000)个数A1,A2,```,AQ,多次求任一区间Ai-Aj中最大数和最小数的差. ...

  7. POJ3264(线段树求区间最大最小值)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 41162   Accepted: 19327 ...

  8. kuangbin专题七 POJ3264 Balanced Lineup (线段树最大最小)

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One d ...

  9. POJ-3264 Balanced Lineup(区间最值,线段树,RMQ)

    http://poj.org/problem?id=3264 Time Limit: 5000MS     Memory Limit: 65536K Description For the daily ...

  10. 【ACM/ICPC2013】线段树题目集合(一)

    前言:前一段时间在网上找了一个线段树题目列表,我顺着做了一些,今天我把做过的整理一下.感觉自己对线段树了解的还不是很深,自己的算法能力还要加强.光练代码能力还是不够的,要多思考.向队友学习,向大牛学习 ...

随机推荐

  1. 2023-05-23:如果交换字符串 X 中的两个不同位置的字母,使得它和字符串 Y 相等, 那么称 X 和 Y 两个字符串相似。如果这两个字符串本身是相等的,那它们也是相似的。 例如,“tars“

    2023-05-23:如果交换字符串 X 中的两个不同位置的字母,使得它和字符串 Y 相等, 那么称 X 和 Y 两个字符串相似.如果这两个字符串本身是相等的,那它们也是相似的. 例如,"t ...

  2. Kafka 杂谈

    开始之前 首先,此篇文章会有很多地方会和 RocketMQ 比较,不太熟悉 RocketMQ 可以去看看我之前写的RocketMQ基础概念剖析&源码解析,先有个大概的印象,可能会帮助你更好的理 ...

  3. docker部署gitlab CI/CD (一)第一篇:部署gitlab及汉化

    网上很多类似教程,但多少有点夹带私货,有的竟然拉取的第三方镜像,而且很多都要修改配置文件,完全不知道是为什么,于是结合其他人的博客和官方文档,知其然也要知其所以然,于2023年4月17日写下这篇. 官 ...

  4. 系统MySQL服务无法启动报错1067的四种解决方法win7系统MySQL服务无法启动报错1067的四种解决方法

        有些win7系统用户在登陆mysql或者重装mysql时出现"无法启动MYSQL服务,错误1067",而且重启.修复注册表都没办法解决问题.那么遇到MySQL服务无法启动问 ...

  5. Galaxy Release (v 21.05),众多核心技术栈变更

    2021年6月初,Galaxy Project 正式发布了 release 21.05 版本:随后6月中旬,发布该版本的 announcement 文档.这里总结一下该版本一些主要的更新内容,为关注和 ...

  6. 手把手教你实战TDD

    1. 前言 领域驱动设计,测试驱动开发. 我们在<手把手教你落地DDD>一文中介绍了领域驱动设计(DDD)的落地实战,本文将对测试驱动开发(TDD)进行探讨,主要内容有:TDD基本理解.T ...

  7. CKS 考试题整理 (05)-Container 安全上下文

    Context Container Security Context 应在特定 namespace 中修改 Deployment. Task 按照如下要求修改 sec-ns 命名空间里的 Deploy ...

  8. 完美决解win10 可以上网却显示无internet的bug

    试过网上的几乎所有方法,例如禁用复用网卡.网络重置.禁用复用服务,也用了用修改注册表下HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesNlaSvcPa ...

  9. Dubbo的高级特性:服务治理篇

    王有志,一个分享硬核Java技术的互金摸鱼侠 加入Java人的提桶跑路群:共同富裕的Java人 上一篇中,我们已经在Spring Boot应用中集成了Dubbo,并注册了一个服务提供方和一个服务使用方 ...

  10. 【Python】爬虫-Xpath

    Xpath 文章参考:https://www.cnblogs.com/mxjhaima/p/13775844.html#案例 安装 pip install lxml 引用 from lxml impo ...