大盗阿福

  • 本题与leetcode198题——打家劫舍的题意一模一样,阅读完本文以后可以尝试以下题目

力扣题目链接)

题目叙述:

阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。这条街上一共有N家店铺,每家店中都有一些现金。阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。作为一向谨慎作案的大盗阿福不愿意冒着被警察追捕的风险行窃。他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?

输入格式

  • 输入的第一行是一个整数T,表示一共有T组数据。
  • 接下来的每组数据,第一行是一个整数N,表示一有N家店铺。
  • 第二行是N个被空格分开的正整数,表示每一家店铺中的现金数量。每家店铺中的现金数量均不超过1000。

输出格式

  • 对于每组数据,输出一行。该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。

输入样例:

2
3
1 8 2
4
10 7 6 14

输出样例:

8
24

样例解释:

  • 对于第一组样例,阿福选择第2家店铺行窃,获得的现金数量为8。对于第二组样例,阿福选择第1和4家店铺行窃获得的现金数量为10+14=24.

动态规划思路分析

  • 设我们打劫的店铺数量为i,获取的价值和为dp ,那么dp明显是i的一个函数,那么我们就用dp[i]作为状态变量,dp[i]表示偷前i家店铺所能获取的价值最大值

状态变量以及它的含义

  • 由上面分析可知,我们设立dp[i] 作为状态变量,并且dp[i]的含义是偷前i家店铺所能获取收益的最大值.

递推公式

  • 我们设dp[i] ,在i的这个位置有两种状态:

    • 1.第i家店铺不偷——dp[i]=dp[i-1]
    • 2.第i家店铺偷——dp[i]=dp[i-2]+w[i],w[i]为第i家店铺的价值

具体细节如下图所示:

遍历顺序:

  • 由上面两步分析可知,dp[i]的状态一定是由前面dp[i-1]dp[i-2],推出来的,所以说遍历顺序一定是从前向后遍历。

如何初始化?

  • 我们首先得处理好边界条件:dp[0]dp[1]怎么处理?
  • 偷前0家店铺的最大价值显然是0,偷前1家店铺的最大价值显然为w[1]
  • 处理好边界条件以后,我们再从前向后,依据递推公式进行递推就行了

举例验证dp数组

下标:1,2,3,4

w[i]:10,7,6,14

dp[i]:10,10,16,24

  • 通过样例2分析可知,我们的dp数组没有分析错。因此我们验证了我们的dp数组的正确性。

优化

  • 我们可以用dp[i-1]的状态直接推出dp[i]的状态。

  • 我们状态表示可以优化成:

    • f[i][0]表示不偷第i家店铺能获取的最大值
    • f[i][1]表示偷第i家店铺能获取的最大值
  • 那么我们的状态转移方程就可以从dp[i-1]推出,不偷第i家店铺,那么我们就可以偷第i-1家店铺,也可以不偷,我们选取这两个之中的最大值,如果偷第i家店铺的话,第i-1家店铺我们一定只能选择不偷。

    • 不偷:dp[i][0]=max(dp[i-1][0],dp[i-1][1])
    • 偷:dp[i][1]=dp[i-1][0]+w[i]

优化后的边界处理:

  • 不偷第1家店铺:f[i][0]=0
  • 偷第1家店铺:f[i][1]=w[1]

优化后的代码处理:

scanf("%d",&t)
while(t--){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&w[i]);
f[1][0]=0;f[1][1]=w[1];
for(int i=2;i<=n;i++){
f[i][0]=max(f[i-1][0],f[i-1][1]);
f[i][1]=f[i-1][0]+w[i];
}
printf("%d\n",max(f[n][0],f[n][1]));
}

总结:

  • 我们上面讲述的两种方法,第一种方法叫做分步转移,第二种方法叫做分类转移,在有些情况下,二者都能使用,而在某些题目当中,只能使用分类转移的方法,我们在以后也会介绍的!希望大家能理解这两种做法。

线性dp:大盗阿福(打家劫舍)的更多相关文章

  1. [OpenJudge8462][序列DP]大盗阿福

    大盗阿福 总时间限制: 1000ms 内存限制: 65536kB [描述] 阿福是一名经验丰富的大盗.趁着月黑风高,阿福打算今晚洗劫一条街上的店铺. 这条街上一共有 N 家店铺,每家店中都有一些现金. ...

  2. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  3. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  4. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  5. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  6. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  7. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  8. nyoj44 子串和 线性DP

    线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...

  9. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

  10. 『最长等差数列 线性DP』

    最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...

随机推荐

  1. 通过 hexo 生成静态博客

    通过 hexo 生成静态博客 背景 在对比了很多博客网站以后,我决定开始慢慢迁移我的文章,以后有时间的话还会搭建自己的网站,目前主流的静态博客生成器有三个: jekyll, hexo, hugo. 静 ...

  2. qt中的 connect 函数

    1.connect()函数实现的是信号与槽的关联. 注意:只有QO bject类及其派生的类才能使用信号和槽的机制 2.函数原型 static QMetaObject::Connection conn ...

  3. NXP i.MX 8M Plus工业开发板硬件说明书( 四核ARM Cortex-A53 + 单核ARM Cortex-M7,主频1.6GHz)

    前  言 本文主要介绍创龙科技TLIMX8MP-EVM评估板硬件接口资源以及设计注意事项等内容. 创龙科技TLIMX8MP-EVM是一款基于NXP i.MX 8M Plus的四核ARM Cortex- ...

  4. 手把手带你使用JWT实现单点登录

    JWT(英文全名:JSON Web Token)是目前最流行的跨域身份验证解决方案之一,今天我们一起来揭开它神秘的面纱! 一.故事起源 说起 JWT,我们先来谈一谈基于传统session认证的方案以及 ...

  5. vba--分拆工作薄

    Sub 分拆工作薄() '分拆工作薄到当前文件夹 Dim sht As Worksheet Dim MyBook As Workbook Application.DisplayAlerts = Fal ...

  6. Java项目静态资源映射的几种方式

    一.Springboot 1.webjars方式 我们之前使用Maven构建一个Web项目时,在main目录下会存在一个webapp的目录,我们以前都是将所有的页面或静态资源导在这个目录下,但现在使用 ...

  7. Docker自定义网段实现容器间的互访【开发环境中】

    我们都知道docker容器之间是互相隔离的,不能互相访问,但如果有些依赖关系的服务要怎么办呢,所以自定义网段实现容器间的互访. Docker 安装好之后默认会创建三个虚拟网卡,可以使用 docker ...

  8. 解决方案 | 在 Tkinter 中导入 pywinauto/pyautogui 时窗口大小发生变化

    上面问题也可以换一个说法,pywinauto/pyautogui 时改变了tkinter的原有的窗口大小.这个问题困扰了我好几天而且网上有这样的问题但是并没有答案,今天摸索出答案给大家分享下.解决方法 ...

  9. selenium获取验证码截图

    获取验证码截图代码: 获取验证码代码: #!/user/bin/env python3 # -*- coding: utf-8 -*- import requests from selenium im ...

  10. 使用threejs实现3D卡片菜单

    成品效果: 用到的技术:vue2.three.js.gsap.js template <template> <div id="box" class="c ...