【scipy 基础】--傅里叶变换
傅里叶变换是一种数学变换,它可以将一个函数或信号转换为另一个函数或信号,它可以将时域信号转换为频域信号,也可以将频域信号转换为时域信号。
在很多的领域都有广泛的应用,例如信号处理、通信、图像处理、计算机科学、物理学、生物学等。
它最大的功能是能够分析和提取信号的特征,将复杂的信号分解为简单的信号。
有人甚至说傅里叶变换是一种可以让我们看透世界本质的变换,将纷繁世界的表象中的本质显现出来。
1. 简介
从数学的角度来推导傅里叶变换的话,会涉及到很多的基本的数学概念,比如正交基,级数,正弦余弦函数等等。
这里主要是为了看懂和使用傅里叶变换,了解傅里叶变换中的主要概念即可,Scipy库会帮助我们处理其中的细节。
举例来说,对于现实中遇到的如下一个原始信号(一般都是非周期性且无规律的):
这样的信号,可以是声音,可以是气温变化,可以是心电图,甚至可以是股票涨跌情况等等。
原始的信号变化复杂,而且大部分情况都看不出什么规律。
这时,傅里叶变换就能发挥作用了,它能够将复杂无序的信号转换为一系列简单规则的信号。
比如上面的信号转换之后变成下面6个简单的信号:
另外,傅里叶变换是可逆的,它也能够将变换后的多个简单的信号还原成原始的复杂信号。
2. fft 模块
Scipy中处理傅里叶变换有2个子模块:fft和fftpack。fftpack即将被淘汰,所以尽量使用fft模块。
fft模块中,傅里叶变换的主要函数有:
| 函数名 | 说明 |
|---|---|
| fft | 计算一维离散傅里叶变换 |
| ifft | 计算一维离散傅里叶逆变换 |
| fft2 | 计算二维离散傅里叶变换 |
| ifft2 | 计算二维离散傅里叶逆变换 |
| fftn | 计算N维离散傅里叶变换 |
| ifftn | 计算N维离散傅里叶逆变换 |
2.1. 变换示例
创建一个复合的信号:
import numpy as np
import matplotlib.pyplot as plt
# 生成 0~8pi 之间100个点
x = np.linspace(0, 8*np.pi, 100)
# 随便生成6个不同的正弦信号
y1 = np.sin(x)
y2 = 4*np.sin(2*x)
y3 = 2*np.sin(4*x)
y4 = 8*np.sin(0.3*x)
y5 = 6*np.sin(0.8*x)
y6 = 0.5*np.sin(5*x)
y = y1 + y2 + y3 + y4 + y5 + y6
plt.plot(x, y)
plt.show()

下面通过一维傅里叶变换,看看得到的结果:
from scipy import fft as spfft
fft_result = spfft.fft(y)
print(fft_result.shape)
# 运行结果
(100,)
fft_result[1:11]
# 运行结果(显示前10个,总共100个)
array([ 99.548317 -0.j , 273.43743482-274.69892934j,
-10.91586207 +66.24943608j, 167.24328363-151.29814008j,
-57.93543536 +49.80593353j, -30.50244642 +56.21303872j,
-19.99077861 +37.24642604j, -13.54997057 +21.30562857j,
35.119202 -161.91923934j, -17.17382544 +41.98143084j])
fft_result[-10:]
# 运行结果(显示后10个,总共100个)
array([-13.61273919 -29.66475047j, -17.17382544 -41.98143084j,
35.119202 +161.91923934j, -13.54997057 -21.30562857j,
-19.99077861 -37.24642604j, -30.50244642 -56.21303872j,
-57.93543536 -49.80593353j, 167.24328363+151.29814008j,
-10.91586207 -66.24943608j, 273.43743482+274.69892934j])
观察快速傅里叶转换之后得到的结果:
- 转换的结果中,每个元素都是复数
- 前10个元素中,除去第一个,剩下的元素和后10个元素相比,实部相同,虚部相反
傅里叶变换之后,可以得到两个描述信号的图形:
- 频谱图:各个频率的波的振幅信息
- 相位图:各个频率的波的相位信息,相位就是波在特定时间所处的位置
频谱信息可以通过 np.abs 方法计算得出:
fig = plt.figure(figsize=[8,4])
ax1 = fig.add_subplot(121)
data = np.abs(fft_result)
ax1.plot(data)
ax1.set_title("双边频谱图")
ax2 = fig.add_subplot(122)
data = np.abs(fft_result[:50])
ax2.plot(data)
ax2.set_title("单边频谱图")
plt.show()

相位信息可以通过 np.angle 方法计算得出:
fig = plt.figure(figsize=[8,4])
ax1 = fig.add_subplot(121)
data = np.angle(fft_result)
ax1.plot(data)
ax1.set_title("双边相位图")
ax2 = fig.add_subplot(122)
data = np.angle(fft_result[:50])
ax2.plot(data)
ax2.set_title("单边相位图")
plt.show()

从这两个图中就能得变换后各个频率的信号的频率,振幅,相位信息。
2.2. 逆变换示例
逆变换就是将变换后的信号还原为原始信号。
因为傅里叶变换并没有任何信息的损失,所以逆变换之后可以看出信号的波形没有任何改变。
data = spfft.ifft(fft_result)
# 逆变换之后,忽略虚部的数字
plt.plot(x, np.real(data))
plt.show()

3. 应用
最后,利用傅里叶变换,我们试着做一个改变声音效果的小例子。
首先,读取一段音频,Scipy就可以直接读取wav文件。
import scipy.io.wavfile as wav
# 读取音频,返回采样率和采样的数值
rate, all_samples = wav.read("/path/to/fft-test.wav")
print(rate)
print(all_samples[1000:1010])
# 运行结果
16000
[122 133 149 151 165 151 160 159 155 151]
plt.plot(all_samples)
plt.show()

音频文件是网上随便找的一段英语对话。
接着,对读取的信号做傅里叶变换,观察变换后的结果:
dd = spfft.rfft(all_samples)
plt.plot(np.abs(dd))
plt.show()

注意,这里用了 rfft函数,不是之前的fft函数,
两者的区别在于fft的结果是复数,会形成对称的双边图,就像上一节介绍的那样。
而rfft的结果是实数,且是单边的,如上图所示。
这两个函数根据实际情况选择使用,都可以对信号进行傅里叶变换。
因为我后面的处理不需要双边的信息,所以这里用 rfft 函数来做傅里叶变换。
3.1. 处理一
第一种处理,我尝试把频率20000HZ以上的信号都去掉,看看音频的效果有什么变化。
new_data = dd.copy()
# 20000HZ以上频率的数据设为0
new_data[20000:] = 0
fig = plt.figure(figsize=[8,4])
ax1 = fig.add_subplot(121)
ax1.plot(np.abs(new_data))
ax2 = fig.add_subplot(122)
ax2.plot(np.abs(dd))
plt.show()

处理之后的信号逆变换为原始信号,再保存为wav音频文件,看音频的变化效果。
new_data = spfft.irfft(new_data)
new_data = np.rint(new_data)
new_data = new_data.astype("int16")
wav.write("/path/to/fft-test-1.wav", rate, new_data)
转换后的音频和原音频比,听起来声音更加闷一些,模糊一些。
3.2. 处理二
这次与处理一相反,把20000HZ以下的信号去掉。
new_data = dd.copy()
# new_data[20000:] = 0
new_data[:20000] = 0
fig = plt.figure(figsize=[8,4])
ax1 = fig.add_subplot(121)
ax1.plot(np.abs(new_data))
ax2 = fig.add_subplot(122)
ax2.plot(np.abs(dd))
plt.show()

然后同样的把信号逆变换回去,并保存为wav文件。
new_data = spfft.irfft(new_data)
new_data = np.rint(new_data)
new_data = new_data.astype("int16")
wav.write("/path/to/fft-test-2.wav", rate, new_data)
这次的声音听起来很遥远,像是长途电话的感觉。
4. 总结
本篇主要介绍了傅里叶变换是什么,以及如何使用Scipy库来进行傅里叶变换。
目的是了解和使用傅里叶变换,而不是从数学角度去推导傅里叶变换。
最后的小例子虽然简单,但见微知著,仅仅删除了一些频率的信号,声音效果就随之变化。
如果把不同声音的文件中,影响音调,音色的频率分析出来,就可以制作一个变声器,
把自己的声音变成男声女声,儿童老人等等。
进一步,用二维傅里叶变换的话,可以分析图像,把图像中的主要频率找出来,
深入下去既可以做图像修复,也可以做图像识别等等。
Scipy库中还有多维傅里叶变换,可以分析现实情况下更加复杂的信号。
5. 附录
文中用到的完整代码(ipynb格式)和一个音频文件,可以从下面的地址下载:
scipy-fft-sample.zip:
https://url11.ctfile.com/f/45455611-910542660-6d7e0f?p=6872
(访问密码: 6872)
【scipy 基础】--傅里叶变换的更多相关文章
- SciPy fftpack(傅里叶变换)
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 基础功能
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- python-数据处理的包Numpy,scipy,pandas,matplotlib
一,NumPy包(numeric python,数值计算) 该包主要包含了存储单一数据类型的ndarry对象的多维数组和处理数组能力的函数ufunc对象.是其它包数据类型的基础.只能处理简单的数据分析 ...
- SciPy 信号处理
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 统计
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 线性代数
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 图像处理
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 优化
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 积分
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 插值
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
随机推荐
- 基于Avalonia 11.0.0+ReactiveUI 的跨平台项目开发1-通用框架
基于Avalonia 11.0.0+ReactiveUI 的跨平台项目开发1-通用框架 Avalonia简介: Avalonia是.NET的一个跨平台UI框架,提供了一个灵活的样式系统,支持广泛的操作 ...
- msvc C++编译链接
C++编译链接 C++编译链接 静态库编译 C RunTimeLibrary 链接过程 动态库编译 场景问题加深理解 总结 静态库编译 C RunTimeLibrary C++是C的超集,C RunT ...
- RDB初步了解
RDB概念 快照文件是.rdb结尾 redis6.2以前和之后(包括6.2)在什么条件下会保存rdb文件有所不同 以前 15min&&1个key(改变)调用保存 5min&&a ...
- HashMap源码的阅读笔记
注释部分 Hash table based implementation of the <tt>Map</tt> interface. This * implementatio ...
- 【go语言】3.1.2 接口的定义和实现
在 Go 中,接口是一种抽象类型,用来描述其他类型应该有哪些方法.它定义了一组方法,但没有实现.这些方法由其他类型实现. 接口的定义 接口定义的格式如下: type InterfaceName int ...
- 在 ubuntu 中安装或升级最新版本的 Elasticsearch
1. 安装 java 8 首先最新版本的elasticsearch需要java8的支持,那先来安装一下. $ sudo add-apt-repository -y ppa:webupd8team/ja ...
- 安装 配置 正向 解析 DNS方法
安装 配置 正向 解析 DNS方法 1,安装dhcp [root@localhost ~]#yum install bind* -y 2,关闭防火墙和selinux [root@localhost ~ ...
- ACl与ACL实验
ACl与ACL实验 ACL 1,ACL概述及 产生的背景 ACL: access list 访问控制列表 2,ACL应用 ACL两种应用: 应用在接口的ACL-----过滤数据包(原目ip地址,原目 ...
- Hugging News #0807: ChatUI 官方 Docker 模板发布、🤗 Hub 和开源生态介绍视频来啦!
每一周,我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新,包括我们的产品和平台更新.社区活动.学习资源和内容更新.开源库和模型更新等,我们将其称之为「Hugging Ne ...
- 产品代码都给你看了,可别再说不会DDD(二):DDD概念大白话
这是一个讲解DDD落地的文章系列,作者是<实现领域驱动设计>的译者滕云.本文章系列以一个真实的并已成功上线的软件项目--码如云(https://www.mryqr.com)为例,系统性地讲 ...