本文分享自华为云社区《GaussDB(DWS)性能调优:row_number() over(p)-rn=1性能瓶颈发现和改写套路》,作者:Zawami 。

1、改写场景

本套路应用于子查询中含有row_number() over(partition by order by) rn,并仅把rn列用于分类排序后筛选最大值的场景。

2、性能分析

GaussDB中SQL语句的执行很多时候是流式的,即对每一条数据进行流水加工,各层算子同时在执行,缩短执行耗时。

但是在一些场景下,需要先取得前一个算子的全部结果集,然后才能够进行下一步的加工;窗口函数就是其中的一种。

观察执行计划可以看到,SQL会在计算得到rn列后,再同本层查询其它列进行关联。由于存在窗口函数,必须先把51号算子先执行完,然后才能进行关联,造成性能瓶颈。

通过去窗口函数改写,我们可以使得分类汇总同明细数据之间的关联流水执行。

改写前局部SQL

SELECT

PROD_EN_NAME,

PROD_LIFE_CYCLE_STATUS

FROM

(

SELECT

PROD_EN_NAME,

LIFE_CYCLE AS PROD_LIFE_CYCLE_STATUS,

DEL_FLAG,

ROW_NUMBER ( ) OVER ( PARTITION BY PROD_EN_NAME ORDER BY RUN_DATE DESC ) RN

FROM

DMISC.DM_DIM_INV_PROD_ATTRI_SNAP_D

WHERE

DATA_TYPE = 1

AND DEL_FLAG = 'N'

AND RUN_DATE <= CAST ( '2023-06-11' || ' 00:00:00' AS TIMESTAMP )

)

WHERE

RN = 1

改写后局部SQL

WITH T AS (

SELECT

PROD_EN_NAME,

MAX ( LIFE_CYCLE ) AS PROD_LIFE_CYCLE_STATUS,

RUN_DATE

FROM

DMISC.DM_DIM_INV_PROD_ATTRI_SNAP_D

WHERE

DATA_TYPE = 1

AND DEL_FLAG = 'N'

AND RUN_DATE <= CAST ( '2023-06-11' || ' 00:00:00' AS TIMESTAMP )

GROUP BY

PROD_EN_NAME,

RUN_DATE

)

SELECT

PROD_EN_NAME,

PROD_LIFE_CYCLE_STATUS

FROM T

WHERE

(PROD_EN_NAME, RUN_DATE) IN (SELECT PROD_EN_NAME, MAX(RUN_DATE) FROM T GROUP BY PROD_EN_NAME)

改写解析:这里先把数据根据原SQL中row_number() over()的partition列和order列进行去重,由于原SQL未定义LIFE_CYCLE的排序方式,改写既可以使用MAX也可以使用MIN函数来进行聚合。然后再对去重后的数据进行过滤,过滤条件显然。

使用这种修改方法,修改前后的全量执行计划已在附件中给出。

这种改写方式解决了上层算子等窗口函数的问题。我们发现,一些业务场景下对不涉及聚合的其它列,比如上面例子中的LIFE_CYCLE并不敏感,且还需要进行进一步聚合的,那么对本层子查询中的去重其实没有硬性需求。可以进一步去除这层去重。

WITH T AS (

SELECT

PROD_EN_NAME,

LIFE_CYCLE AS PROD_LIFE_CYCLE_STATUS,

RUN_DATE

FROM

DMISC.DM_DIM_INV_PROD_ATTRI_SNAP_D

WHERE

DATA_TYPE = 1

AND DEL_FLAG = 'N'

AND RUN_DATE <= CAST ( '2023-06-11' || ' 00:00:00' AS TIMESTAMP )

)

SELECT

PROD_EN_NAME,

PROD_LIFE_CYCLE_STATUS

FROM T

WHERE

(PROD_EN_NAME, RUN_DATE) IN (SELECT PROD_EN_NAME, MAX(RUN_DATE) FROM T GROUP BY PROD_EN_NAME)

改写后执行计划如下:

可以看到,执行计划中虽然51层算子只快了200ms,但由于减少阻塞,1~7层算子的执行时间缩短了,总体比原先快了约480ms。

点击关注,第一时间了解华为云新鲜技术~

数仓性能调优:row_number() over(p)-rn=1性能瓶颈发现和改写套路的更多相关文章

  1. 十八般武艺玩转GaussDB(DWS)性能调优:SQL改写

    摘要:本文将系统介绍在GaussDB(DWS)系统中影响性能的坏味道SQL及SQL模式,帮助大家能够从原理层面尽快识别这些坏味道SQL,在调优过程中及时发现问题,进行整改. 数据库的应用中,充斥着坏味 ...

  2. Java性能调优(一):调优的流程和程序性能分析

     https://blog.csdn.net/Oeljeklaus/article/details/80656732 Java性能调优 随着应用的数据量不断的增加,系统的反应一般会越来越慢,这个时候我 ...

  3. Hadoop作业性能指标及參数调优实例 (二)Hadoop作业性能调优7个建议

    作者:Shu, Alison Hadoop作业性能调优的两种场景: 一.用户观察到作业性能差,主动寻求帮助. (一)eBayEagle作业性能分析器 1. Hadoop作业性能异常指标 2. Hado ...

  4. Apache Pulsar 在 BIGO 的性能调优实战(上)

    背景 在人工智能技术的支持下,BIGO 基于视频的产品和服务受到广泛欢迎,在 150 多个国家/地区拥有用户,其中包括 Bigo Live(直播)和 Likee(短视频).Bigo Live 在 15 ...

  5. [网站性能2]Asp.net平台下网站性能调优的实战方案

    文章来源:http://www.cnblogs.com/dingjie08/archive/2009/11/10/1599929.html 前言    最近帮朋友运营的平台进行了性能调优,效果还不错, ...

  6. Asp.net平台下网站性能调优的实战方案(转)

    转载地址:http://www.cnblogs.com/chenkai/archive/2009/11/07/1597795.html 前言 最近帮朋友运营的平台进行了性能调优,效果还不错,所以写出来 ...

  7. hadoop 性能调优与运维

    hadoop 性能调优与运维 . 硬件选择 . 操作系统调优与jvm调优 . hadoop运维 硬件选择 1) hadoop运行环境 2)  原则一: 主节点可靠性要好于从节点 原则二:多路多核,高频 ...

  8. JVM性能调优监控工具jps、jstack、jmap、jhat、jstat、hprof使用详解

    摘要: JDK本身提供了很多方便的JVM性能调优监控工具,除了集成式的VisualVM和jConsole外,还有jps.jstack.jmap.jhat.jstat.hprof等小巧的工具,本博客希望 ...

  9. Java性能调优

    一.JVM内存模型及垃圾收集算法 1.根据Java虚拟机规范,JVM将内存划分为: New(年轻代) Tenured(年老代) 永久代(Perm) 其中New和Tenured属于堆内存,堆内存会从JV ...

  10. JVM内存模型与性能调优

    堆内存(Heap) 堆是由Java虚拟机(JVM,下文提到的JVM特指Sun hotspot JVM)用来存放Java类.对象和静态成员的内存空间,Java程序中创建的所有对象都在堆中分配空间,堆只用 ...

随机推荐

  1. 用Rust手把手编写一个Proxy(代理), 准备篇, 动手造轮子

    用Rust手把手编写一个Proxy(代理), 准备篇, 动手造轮子 wmproxy 将实现http/https代理, socks5代理, 后续将实现websocket代理, 内外网穿透等, 会将实现过 ...

  2. MAC版本vmware无法识别虚拟机网卡适配器

    一.问题 莫名其妙的突然mac上的vmware无法识别网络适配器了 二.解决过程 1.重装vmware-无效 2.降级安装vmware-无效 3.安装pd虚拟机,并使用sudo命令启动-偶尔有效 4. ...

  3. [C++]P3379 LCA 最近公共祖先

    最近公共祖先 LCA 倍增写法 LCA的倍增主要由三个重要的过程组成 预处理lg数组 DFS求fa depth 倍增节点 观看以下内容前建议先把完整代码大致纵览一遍,有利于理解各个函数的意义 倍增思想 ...

  4. 在Map或者Collection的时候,不要用它们的API直接修改集合的内容(否则会出现 java.util.ConcurrentModificationException 异常)

    http://www.iteye.com/topic/124788 http://www.blogjava.net/EvanLiu/archive/2008/08/31/224453.html

  5. .Net8 Blazor 尝鲜

    全栈 Web UI 随着 .NET 8 的发布,Blazor 已成为全堆栈 Web UI 框架,可用于开发在组件或页面级别呈现内容的应用,其中包含: 用于生成静态 HTML 的静态服务器呈现. 使用 ...

  6. nodejs 实现MQTT协议的服务器端和客户端的双向交互

    一.项目背景 公司和第三方合作开发一个传感器项目,想要通过电脑或者手机去控制项目现场的传感器控制情况.现在的最大问题在于,现场的边缘终端设备接入的公网方式是无线接入,无法获取固定IP,所以常规的HTT ...

  7. c++学习,和友元函数

    第一友元函数访问私有元素时不会显示,但是是可以调用的(我使用的是gcc10.3版本的)友元函数可以访问任何元素.就是语法你别写错了. 继承如果父类已经写了构造函数,子类一定要赋值给构造函数,要么父类就 ...

  8. 2023年奔走的总结---吉特日化MES 制药项目 篇二

    书接上文,反正今年也就折腾一下了,索性好好整理一下思绪写写文章,当做工作笔记.今年工作中遇到了各种各样的事情,可能是由于今年项目压力像无头苍蝇一样瞎撞,也打发一下按耐不住的心.本篇将记录一下<吉 ...

  9. [ABC280G] Do Use Hexagon Grid 2

    Problem Statement A hexagonal cell is represented as $(i,j)$ with two integers $i$ and $j$. Cell $(i ...

  10. Spring Cache + Caffeine的整合与使用

    前言 对于一些项目里需要对数据库里的某些数据一直重复请求的,且这些数据基本是固定的,在这种情况下,可以借助简单使用本地缓存来缓存这些数据.这些介绍一下Spring Cache和Caffeine的使用. ...