Mr. Kitayuta's Colorful Graph

算法:根号分治。

题目大意先说一下:给一个 \(n\) 点 \(m\) 边的无向图,边有颜色。\(q\) 组询问,每次给出 \(u,v\),求有多少种颜色 \(c\),使得存在一条 \(u\) 到 \(v\) 的路径,这个路径中每条边的颜色都为 \(c\)。

数据范围:\(2\le n\le 10^5,1\le c\le m,q\le 10^5\)。

先考虑一个朴素的暴力,暴力对每个颜色加边,用并查集判连通性,暴力扫过每个询问,如果在一个颜色上这两个点是连通的,答案加 \(1\)。

发现这种做法在颜色非常多的时候要扫过每个颜色和每个询问的时间复杂度非常高,难以接受,所以要考虑优化。

我们怎么优化?上文提及了在颜色非常多的时候复杂度会爆炸,那么他有什么优势?当然是在颜色少的时候跑得很快,那么我们采取他的优势,想一想颜色多的时候的优秀的写法。

这里可以停顿 \(1\) 分钟,自己想一下。

我们可以发现,既然颜色多,边的数量不会太多,那么就证明每个颜色的边连接的点不会太多,所以我们可以暴力枚举这样的颜色的边连接的点,判断是否连通,如果连通就答案加 \(1\)。

但是会出现一个问题,如果这个点对不在询问里怎么办?这其实是无关紧要的,因为询问的我们会处理到,没有询问的随便加也不会影响。

所以我们记颜色 \(c\) 的边数为 \(cnt_c\),以 \(\sqrt m\) 为分界线,判断使用哪种暴力。

由于这道题的代码作者认为并不好写,所以下面放一下代码。

#include<bits/stdc++.h>
#define int long long
#define N 100005
#define pii pair<int,int>
#define x first
#define y second
using namespace std;
int n,m,q,cnt[N];
int p[N];
vector<pii>e[N],qry,rqry,f[N];
map<int,bool>col;
map<pii,int>res;
int find(int x){
if(p[x]!=x)p[x]=find(p[x]);
return p[x];
}
void force1(){
for(int i=1;i<=n;i++){
p[i]=i;
}
for(auto eu:col){
int c=eu.x;
if(cnt[c]<sqrt(m))continue;
for(auto edge:e[c]){
int a=edge.x,b=edge.y;
int fa=find(a),fb=find(b);
if(fa!=fb){
p[fa]=fb;
}
}
map<pii,bool>st;
for(auto eu:qry){
int a=eu.x,b=eu.y;
if(st[{a,b}])continue;
int fa=find(a),fb=find(b);
if(fa==fb)res[{a,b}]++;
st[{a,b}]=1;
}
for(auto color:e[c]){
int a=color.x,b=color.y;
p[a]=a;p[b]=b;
}
}
}
void force2(){
for(int i=1;i<=n;i++){
p[i]=i;
}
for(auto eu:col){
int c=eu.x;
if(cnt[c]>=sqrt(m))continue;
vector<int>ind;
map<int,bool>state;
for(auto edge:e[c]){
int a=edge.x,b=edge.y;
if(!state[a]){
state[a]=1;
ind.push_back(a);
}
if(!state[b]){
state[b]=1;
ind.push_back(b);
}
int fa=find(a),fb=find(b);
if(fa!=fb){
p[fa]=fb;
}
}
for(int i=0;i<ind.size();i++){
for(int j=i+1;j<ind.size();j++){
int a=ind[i],b=ind[j];
int c=min(a,b),d=max(a,b);
int fa=find(c),fb=find(d);
if(fa==fb){
res[{c,d}]++;
}
}
}
for(auto color:e[c]){
int a=color.x,b=color.y;
p[a]=a;p[b]=b;
}
}
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
cin>>n>>m;
for(int i=1;i<=m;i++){
int a,b,c;
cin>>a>>b>>c;
if(a>b)swap(a,b);
cnt[c]++;
col[c]=1;
e[c].push_back({a,b});
}
cin>>q;
for(int i=1;i<=q;i++){
int a,b;
cin>>a>>b;
if(a>b)swap(a,b);
qry.push_back({a,b});
rqry.push_back({a,b});
}
sort(qry.begin(),qry.end());
qry.erase(unique(qry.begin(),qry.end()),qry.end());
force1();
force2();
for(auto eu:rqry){
int a=eu.x,b=eu.y;
cout<<res[{a,b}]<<'\n';
}
return 0;
}

CF506D题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

  10. JSOI2016R3 瞎BB题解

    题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...

随机推荐

  1. 用cvCvtColor转化RGB彩色图像为灰度图像时发生的小失误

    版本信息 MAC版本:10.10.5 Xcode版本:7.2 openCV版本:2.4.13 在运行程序的时候发现cvCvtColor的地方程序报错 error: (-215) src.depth() ...

  2. 15-BFC

    01 BFC官方解释 https://www.w3.org/TR/CSS2/visuren.html#normal-flow 大致意思如下 02 什么情况下会形成BFC MDN解释 https://d ...

  3. 模拟用户登录-cookes

    import requests url = 'https://www.xread8.com/user/login.json' headers = { 'User-Agent': 'Mozilla/5. ...

  4. 算法金 | Transformer,一个神奇的算法模型!!

    大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 在现代自然语言处理(NLP)领域,Transformer 模型的出现带 ...

  5. 瑞芯微RK3568J如何“调节主频”,实现功耗降低?一文教会您!

    RK3568J主频模式说明 为降低RK3568J功耗,提高运行系统健壮性,在产品现场对RK3568J实现主频调节则显得尤为重要. 图 1 RK3568J官方数据手册主频模式描述 normal模式 根据 ...

  6. OPC 详解 第一篇 基础概念

    一 .概述 OPC 的全称是OPC(OLE for Process Control), 用于过程控制的OLE,OLE(Object Linking and Embedding)大家都知道是对象连接与嵌 ...

  7. Spark3学习【基于Java】5. Spark-Sql联表查询JOIN

    大数据场景下,联表远比微小型关系型数据库中使用的频繁.网上有句话: 传统数据库单机模式做Join的场景毕竟有限,也建议尽量减少使用Join. 然而大数据领域就完全不同,Join是标配,OLAP业务根本 ...

  8. HTML5、CSS3 里面都新增了那些新特性?

    HTML5 新的语义标签 article 独立的内容. aside 侧边栏. header 头部. nav 导航. section 文档中的节. footer 页脚. 画布(Canvas) API 地 ...

  9. Java FastJson解析json字符串

    json转map Map<String, 实体类> titleMap=JSON.parseObject(JSON字符串, new TypeReference<HashMap<S ...

  10. SpringBoot中使用Servlet3.0注解开发自定义的拦截器

    使用Servlet3.0的注解进行配置步骤 启动类里面加@ServletComponentScan,进行扫描 新建一个Filter类,implements Filter,并实现对应的接口 @WebFi ...