论文题目:

Reverb: A Framework for Experience Replay

地址:

https://arxiv.org/pdf/2102.04736.pdf

框架代码地址:

https://github.com/deepmind/reverb

相关文章:

面向分布式强化学习的经验回放框架(使用例子Demo)——Reverb: A Framework for Experience Replay

pip安装方式:(该方式大概率无法成功安装,此时可以参考本文底部的详细安装教程)

pip install dm-reverb

注意事项:

由于该框架是为TensorFlow所设计的,因此该框架的输入和输出变量均为TensorFlow的向量tensor,如果其他深度学习框架需要使用该分布式经验池框架则需要手动将输入和输出的变量转为numpy.array再进行转换,比如pytorch的tensor需要先转为numpy.array,然后再转为tensorflow.tensor 。

reverb框架和TensorFlow框架均为Google内部使用的框架,因此可以参考的使用案例和教程代码都很少,这也是Google的计算框架难以被外界使用的一个原因,对于reverb框架来说,没有比较成熟的教程代码,因此难以使用。

------------------------------------------------------------------

偶然间看到了这个experience replay框架,这个框架可以被看做是公开的工业界使用的面向分布式的经验回放框架,这方面的工作一直较少,可能这样的工作更偏向于工程而不是学术所以导致很少有人在做,即使是那些工业界也少有人在做这方面的工作,但是这样的工作还是蛮有必要的,毕竟算法这东西最后还是要服务于工业界的。

-------------------------------------------------------------------------

介绍一个reverb的函数:

reverb.rate_limiters.SampleToInsertRatio

帮助文档:

SampleToInsertRatio(samples_per_insert: float, min_size_to_sample: int, error_buffer: Union[float, Tuple[float, float]])
|
| Maintains a specified ratio between samples and inserts.
|
| The limiter works in two stages:
|
| Stage 1. Size of table is lt `min_size_to_sample`.
| Stage 2. Size of table is ge `min_size_to_sample`.
|
| During stage 1 the limiter works exactly like MinSize, i.e. it allows
| all insert calls and blocks all sample calls. Note that it is possible to
| transition into stage 1 from stage 2 when items are removed from the table.
|
| During stage 2 the limiter attempts to maintain the ratio
| `samples_per_inserts` between the samples and inserts. This is done by
| measuring the "error" in this ratio, calculated as:
|
| number_of_inserts * samples_per_insert - number_of_samples
|
| If `error_buffer` is a number and this quantity is larger than
| `min_size_to_sample * samples_per_insert + error_buffer` then insert calls
| will be blocked; sampling will be blocked for error less than
| `min_size_to_sample * samples_per_insert - error_buffer`.
|
| If `error_buffer` is a tuple of two numbers then insert calls will block if
| the error is larger than error_buffer[1], and sampling will block if the error
| is less than error_buffer[0].
|
| `error_buffer` exists to avoid unnecessary blocking for a system that is
| more or less in equilibrium.

该函数通过设置:samples_per_insert和error_buffer变量实现对sample和insert操作的权衡,主要思想就是如果sample的过少就阻塞insert操作;如果insert的太少就阻塞sample。

通过判断number_of_inserts * samples_per_insert - number_of_samples的值来判断现在的sample和insert操作的权衡情况,如果该值大于min_size_to_sample * samples_per_insert + error_buffer,那么说明insert的太多了,需要阻塞insert操作,此时sample可以正常继续;如果该值小于min_size_to_sample * samples_per_insert - error_buffer,那么说明此时sample的太多了,此时需要阻塞sample操作,而insert操作可以正常继续。

========================================================

这个框架的安装方法(ubuntu系统环境下):

强化学习分布式经验回放框架(experience replay)reverb的安装

=====================================================

面向分布式强化学习的经验回放框架——Reverb: A Framework for Experience Replay的更多相关文章

  1. 分布式强化学习基础概念(Distributional RL )

    分布式强化学习基础概念(Distributional RL) from: https://mtomassoli.github.io/2017/12/08/distributional_rl/ 1. Q ...

  2. 强化学习(十七) 基于模型的强化学习与Dyna算法框架

    在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Base ...

  3. ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文

    https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...

  4. 5G网络的深度强化学习:联合波束成形,功率控制和干扰协调

    摘要:第五代无线通信(5G)支持大幅增加流量和数据速率,并提高语音呼叫的可靠性.在5G无线网络中共同优化波束成形,功率控制和干扰协调以增强最终用户的通信性能是一项重大挑战.在本文中,我们制定波束形成, ...

  5. 强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)

    在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna.本文我们讨论另一种非常流行的集合基于模型与不基 ...

  6. ICML论文|阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏

    今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战&g ...

  7. 强化学习中的经验回放(The Experience Replay in Reinforcement Learning)

    一.Play it again: reactivation of waking experience and memory(Trends in Neurosciences 2010) SWR发放模式不 ...

  8. 谷歌重磅开源强化学习框架Dopamine吊打OpenAI

    谷歌重磅开源强化学习框架Dopamine吊打OpenAI 近日OpenAI在Dota 2上的表现,让强化学习又火了一把,但是 OpenAI 的强化学习训练环境 OpenAI Gym 却屡遭抱怨,比如不 ...

  9. 谷歌推出新型强化学习框架Dopamine

    今日,谷歌发布博客介绍其最新推出的强化学习新框架 Dopamine,该框架基于 TensorFlow,可提供灵活性.稳定性.复现性,以及快速的基准测试. GitHub repo:https://git ...

  10. 【强化学习】1-1-2 “探索”(Exploration)还是“ 利用”(Exploitation)都要“面向目标”(Goal-Direct)

    title: [强化学习]1-1-2 "探索"(Exploration)还是" 利用"(Exploitation)都要"面向目标"(Goal ...

随机推荐

  1. node.js常用命令总结

    Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时环境,用于构建快速.可扩展的网络应用程序.它使用事件驱动.非阻塞 I/O 模型,使其非常适合构建数据密集型的实时应用 ...

  2. 判断一个数n是不是快乐数

    引言 题目:编写一个算法来判断一个数n是不是快乐数 来源:网友分享的面试算法题 题目描述 [快乐数定义] 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和. 然后重复这个过程直到这个数变为 ...

  3. 制作Jdk镜像

    本文介绍用Dockerfile的方式构建Jdk镜像,请保证安装了Docker环境. 首先创建/opt/jdk目录,后续步骤都在该目录下进行操作. 准备好Jdk安装文件,放到/opt/jdk目录下. 编 ...

  4. 详解Web应用安全系列(2)注入漏洞之XSS攻击

    上一篇介绍了SQL注入漏洞,今天我们来介绍另一个注入漏洞,即XSS跨站脚本攻击.XSS 全称(Cross Site Scripting) 跨站脚本攻击, 是Web应用中常见的漏洞.指攻击者在网页中嵌入 ...

  5. MegaCli命令使用整理

    1. 软件安装 rpm -ivh Lib_Utils-1.00-09.noarch.rpm rpm -ivh MegaCli-8.02.21-1.noarch.rpm 2. 常用命令 /opt/Meg ...

  6. Kubernetes(K8s)之Pod

    Pod介绍 Pod是K8s的最小调度单位 内部是一组Container容器,根容器Pause和其他业务容器 拥有唯一Pod IP 小贴士: 在生产环境中,极少单独Pod的情况 一般都是使用Deploy ...

  7. 国产化率100%!全志科技A40i工业核心板规格书资料分享

    1.核心板简介 创龙科技SOM-TLA40i是一款基于全志科技A40i处理器设计的4核ARM Cortex-A7国产工业核心板,每核主频高达1.2GHz. 核心板通过邮票孔连接方式引出CSI.TVIN ...

  8. Go 使用原始套接字捕获网卡流量

    Go 使用原始套接字捕获网卡流量 Go 捕获网卡流量使用最多的库为 github.com/google/gopacket,需要依赖 libpcap 导致必须开启 CGO 才能够进行编译. 为了减少对环 ...

  9. SpringBoot读取配置文件的几种方式

    示例 user: name: zhaotian age: 18 sex: 男 @Value注解 @Value注解是Spring框架提供的用于注入配置属性值的注解,它可用于类的成员变量.方法参数和构造函 ...

  10. SpringBoot 整合EasyExcel 获取动态Excel列名

    导读 最近负责消息网关,里面有个短信模板导入功能,因为不同模板编号对应不同参数,导入后的数据定时发送,涉及到Excel中列名不固定问题,于是想根据列名+值,组合成一个大JSON,具体代码如下. 引入依 ...