【scikit-learn基础】--『监督学习』之 随机森林分类
随机森林分类算法是一种基于集成学习(ensemble learning)的机器学习算法,
它的基本原理是通过对多个决策树的预测结果进行平均或投票,以产生最终的分类结果。
随机森林算法可用于回归和分类问题。
关于随机森林算法在回归问题上的应用可参考:TODO
随机森林分类算法可以应用于各种需要进行分类或预测的问题,如垃圾邮件识别、信用卡欺诈检测、疾病预测等,
它也可以与其他机器学习算法进行结合,以进一步提高预测准确率。
1. 算法概述
随机森林的基本原理是构建多棵决策树,每棵树都是基于原始训练数据的一个随机子集进行训练。在构建每棵树时,算法会随机选择一部分特征进行考虑,而不是考虑所有的特征。
然后,对于一个新的输入样本,每棵树都会进行分类预测,并将预测结果提交给“森林”进行最终的分类决策。
一般来说,森林会选择出现次数最多的类别作为最终的分类结果。
理论上来看,随机森林分类应该比决策树分类有更加好的准确度,特别是在高维度的数据情况下。
2. 创建样本数据
为了后面比较随机森林分类算法和决策树算法的准确性,创建分类多一些(8个分类标签)的样本数据。
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
# 分类数据的样本生成器
X, y = make_classification(
n_samples=1000, n_classes=8, n_clusters_per_class=2, n_informative=6
)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=y, s=25)
plt.show()

3. 模型训练
首先,分割训练集和测试集。
from sklearn.model_selection import train_test_split
# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
这次按照9:1的比例来划分训练集和测试集。
用决策树分类模型来训练数据:
from sklearn.tree import DecisionTreeClassifier
reg_names = [
"ID3算法",
"C4.5算法",
"CART算法",
]
# 定义
regs = [
DecisionTreeClassifier(criterion="entropy"),
DecisionTreeClassifier(criterion="log_loss"),
DecisionTreeClassifier(criterion="gini"),
]
# 训练模型
for reg in regs:
reg.fit(X_train, y_train)
# 在测试集上进行预测
y_preds = []
for reg in regs:
y_pred = reg.predict(X_test)
y_preds.append(y_pred)
for i in range(len(y_preds)):
correct_pred = np.sum(y_preds[i] == y_test)
print("决策树【{}】 预测正确率:{:.2f}%".format(reg_names[i], correct_pred / len(y_pred) * 100))
# 运行结果
决策树【ID3算法】 预测正确率:43.00%
决策树【C4.5算法】 预测正确率:42.00%
决策树【CART算法】 预测正确率:42.00%
用随机森林分类模型来训练数据:
from sklearn.ensemble import RandomForestClassifier
reg_names = [
"ID3算法",
"C4.5算法",
"CART算法",
]
# 定义
regs = [
RandomForestClassifier(criterion="entropy"),
RandomForestClassifier(criterion="log_loss"),
RandomForestClassifier(criterion="gini"),
]
# 训练模型
for reg in regs:
reg.fit(X_train, y_train)
# 在测试集上进行预测
y_preds = []
for reg in regs:
y_pred = reg.predict(X_test)
y_preds.append(y_pred)
for i in range(len(y_preds)):
correct_pred = np.sum(y_preds[i] == y_test)
print("随机森林【{}】 预测正确率:{:.2f}%".format(reg_names[i], correct_pred / len(y_pred) * 100))
# 运行结果
随机森林【ID3算法】 预测正确率:64.00%
随机森林【C4.5算法】 预测正确率:63.00%
随机森林【CART算法】 预测正确率:69.00%
可以看出,随机森林分类的准确性确实比决策树分类提高了。
不过,运行过程中也可以发现,随机森林的训练时间会比决策树长一些。
4. 总结
随机森林分类算法的优势在于:
- 抗过拟合能力强:由于采用随机选择特征的方式,可以有效地避免过拟合问题。
- 泛化能力强:通过对多个决策树的结果进行投票或平均,可以获得更好的泛化性能。
- 对数据特征的选取具有指导性:在构建决策树时会对特征进行选择,这可以为后续的特征选择提供指导。
- 适用于大规模数据集:可以有效地处理大规模数据集,并且训练速度相对较快。
当然,随机森林分类算法也存在一些劣势:
- 需要大量的内存和计算资源:由于需要构建多个决策树,因此需要更多的内存和计算资源。
- 需要调整参数:性能很大程度上取决于参数的设置,如树的数量、每个节点的最小样本数等,这些参数的设置需要一定的经验和实验。
- 对新样本的预测性能不稳定:由于是通过投票或平均多个决策树的结果来进行预测,因此对新样本的预测性能可能会受到影响。
【scikit-learn基础】--『监督学习』之 随机森林分类的更多相关文章
- 随机森林分类(Random Forest Classification)
其实,之前就接触过随机森林,但仅仅是用来做分类和回归.最近,因为要实现一个idea,想到用随机森林做ensemble learning才具体的来看其理论知识.随机森林主要是用到决策树的理论,也就是用决 ...
- 机器学习之路:python 集成分类器 随机森林分类RandomForestClassifier 梯度提升决策树分类GradientBoostingClassifier 预测泰坦尼克号幸存者
python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比 附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/l ...
- Python基础『一』
内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...
- Python基础『二』
目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值 ...
- 机器学习实战基础(三十六):随机森林 (三)之 RandomForestClassifier 之 重要属性和接口
重要属性和接口 至此,我们已经讲完了所有随机森林中的重要参数,为大家复习了一下决策树的参数,并通过n_estimators,random_state,boostrap和oob_score这四个参数帮助 ...
- [Machine Learning & Algorithm] 随机森林(Random Forest)
1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来 ...
- Python机器学习笔记——随机森林算法
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...
- 随机森林(Random Forest)
阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Pyth ...
- 随机森林(Random Forest),决策树,bagging, boosting(Adaptive Boosting,GBDT)
http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 ...
- [Machine Learning & Algorithm] 随机森林(Random Forest)-转载
作者:Poll的笔记 博客出处:http://www.cnblogs.com/maybe2030/ 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 ...
随机推荐
- Redis系列内容完整版
@ 目录 Redis系列之_Redis介绍安装配置 第一章 redis初识 1.1 Redis是什么 1.2 Redis特性(8个) 1.3 Redis单机安装 1.3.1下载安装 1.3.2三种启动 ...
- 使用Docker buildx 为 .NET 构建多平台镜像
.NET 团队有一篇博客 改进多平台容器支持, 详细介绍了.NET 7 以上的平台可以轻松的使用Docker buildx 工具构建多平台的镜像. buildx 是 Docker 官方提供的一个构建工 ...
- 每天5分钟复习OpenStack(五)CPU虚拟化
KVM 虚拟化之CPU 虚拟化存在是为了更高效的利用物理机的资源,而虚拟机技术主要是针对三大组件,分别是CPU虚拟化.存储虚拟化.网络虚拟化.下面我们分别介绍下三大组件的常用知识. CPU 虚拟化 1 ...
- C# 在流行度指数上将超过Java
2023年10月最新的TIOBE编程语言流行指数表明:C#和Java之间的差距从未如此之小,目前,差异仅为1.2%,如果趋势保持这种状态,C#将在大约2个月内超过Java,TIOBE Software ...
- sprintf函数内存越界
最近在做项目的时候遇到sprintf函数内存越界的问题,现在分享给大家,希望对大家有用. 首先介绍了sprintf 这个函数. 函数原型: int sprintf(char *str, const ...
- docker 下拉取oracle_11G镜像配置
1.拉取镜像 docker pull registry.cn-hangzhou.aliyuncs.com/helowin/oracle_11g#查看镜像信息docker images 2.创建容器 # ...
- mac os 升级到13后,系统免密失败
# sudo vim /etc/ssh/ssh_config # 添加以下内容 PubkeyAcceptedKeyTypes +ssh-rsa
- python实现汉诺塔的图解递归算法
写在前面 工作闲来无事,看了python,写了一个汉诺塔. 还是蛮喜欢python这门语言的,很简洁. 正文 一.起源: 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候 ...
- 手撕Vuex-实现actions方法
经过上一篇章介绍,完成了实现 mutations 的功能,那么接下来本篇将会实现 actions 的功能. 本篇我先介绍一下 actions 的作用,然后再介绍一下实现的思路,最后再实现代码. act ...
- 基于iptables防火墙堵漏
之前在网上流传个段子:发现自己电脑被入侵,最有效的办法是即拔掉网线~ 虽然只是个段子却说明一旦机器发现漏洞被入侵,阻断入侵刻不容缓,无论对个人电脑和业务服务器都是如此. 商业服务器虽然有各种防护措施, ...