【scikit-learn基础】--『监督学习』之 随机森林分类
随机森林分类算法是一种基于集成学习(ensemble learning)的机器学习算法,
它的基本原理是通过对多个决策树的预测结果进行平均或投票,以产生最终的分类结果。
随机森林算法可用于回归和分类问题。
关于随机森林算法在回归问题上的应用可参考:TODO
随机森林分类算法可以应用于各种需要进行分类或预测的问题,如垃圾邮件识别、信用卡欺诈检测、疾病预测等,
它也可以与其他机器学习算法进行结合,以进一步提高预测准确率。
1. 算法概述
随机森林的基本原理是构建多棵决策树,每棵树都是基于原始训练数据的一个随机子集进行训练。在构建每棵树时,算法会随机选择一部分特征进行考虑,而不是考虑所有的特征。
然后,对于一个新的输入样本,每棵树都会进行分类预测,并将预测结果提交给“森林”进行最终的分类决策。
一般来说,森林会选择出现次数最多的类别作为最终的分类结果。
理论上来看,随机森林分类应该比决策树分类有更加好的准确度,特别是在高维度的数据情况下。
2. 创建样本数据
为了后面比较随机森林分类算法和决策树算法的准确性,创建分类多一些(8个分类标签)的样本数据。
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
# 分类数据的样本生成器
X, y = make_classification(
n_samples=1000, n_classes=8, n_clusters_per_class=2, n_informative=6
)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=y, s=25)
plt.show()
3. 模型训练
首先,分割训练集和测试集。
from sklearn.model_selection import train_test_split
# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
这次按照9:1的比例来划分训练集和测试集。
用决策树分类模型来训练数据:
from sklearn.tree import DecisionTreeClassifier
reg_names = [
"ID3算法",
"C4.5算法",
"CART算法",
]
# 定义
regs = [
DecisionTreeClassifier(criterion="entropy"),
DecisionTreeClassifier(criterion="log_loss"),
DecisionTreeClassifier(criterion="gini"),
]
# 训练模型
for reg in regs:
reg.fit(X_train, y_train)
# 在测试集上进行预测
y_preds = []
for reg in regs:
y_pred = reg.predict(X_test)
y_preds.append(y_pred)
for i in range(len(y_preds)):
correct_pred = np.sum(y_preds[i] == y_test)
print("决策树【{}】 预测正确率:{:.2f}%".format(reg_names[i], correct_pred / len(y_pred) * 100))
# 运行结果
决策树【ID3算法】 预测正确率:43.00%
决策树【C4.5算法】 预测正确率:42.00%
决策树【CART算法】 预测正确率:42.00%
用随机森林分类模型来训练数据:
from sklearn.ensemble import RandomForestClassifier
reg_names = [
"ID3算法",
"C4.5算法",
"CART算法",
]
# 定义
regs = [
RandomForestClassifier(criterion="entropy"),
RandomForestClassifier(criterion="log_loss"),
RandomForestClassifier(criterion="gini"),
]
# 训练模型
for reg in regs:
reg.fit(X_train, y_train)
# 在测试集上进行预测
y_preds = []
for reg in regs:
y_pred = reg.predict(X_test)
y_preds.append(y_pred)
for i in range(len(y_preds)):
correct_pred = np.sum(y_preds[i] == y_test)
print("随机森林【{}】 预测正确率:{:.2f}%".format(reg_names[i], correct_pred / len(y_pred) * 100))
# 运行结果
随机森林【ID3算法】 预测正确率:64.00%
随机森林【C4.5算法】 预测正确率:63.00%
随机森林【CART算法】 预测正确率:69.00%
可以看出,随机森林分类的准确性确实比决策树分类提高了。
不过,运行过程中也可以发现,随机森林的训练时间会比决策树长一些。
4. 总结
随机森林分类算法的优势在于:
- 抗过拟合能力强:由于采用随机选择特征的方式,可以有效地避免过拟合问题。
- 泛化能力强:通过对多个决策树的结果进行投票或平均,可以获得更好的泛化性能。
- 对数据特征的选取具有指导性:在构建决策树时会对特征进行选择,这可以为后续的特征选择提供指导。
- 适用于大规模数据集:可以有效地处理大规模数据集,并且训练速度相对较快。
当然,随机森林分类算法也存在一些劣势:
- 需要大量的内存和计算资源:由于需要构建多个决策树,因此需要更多的内存和计算资源。
- 需要调整参数:性能很大程度上取决于参数的设置,如树的数量、每个节点的最小样本数等,这些参数的设置需要一定的经验和实验。
- 对新样本的预测性能不稳定:由于是通过投票或平均多个决策树的结果来进行预测,因此对新样本的预测性能可能会受到影响。
【scikit-learn基础】--『监督学习』之 随机森林分类的更多相关文章
- 随机森林分类(Random Forest Classification)
其实,之前就接触过随机森林,但仅仅是用来做分类和回归.最近,因为要实现一个idea,想到用随机森林做ensemble learning才具体的来看其理论知识.随机森林主要是用到决策树的理论,也就是用决 ...
- 机器学习之路:python 集成分类器 随机森林分类RandomForestClassifier 梯度提升决策树分类GradientBoostingClassifier 预测泰坦尼克号幸存者
python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比 附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/l ...
- Python基础『一』
内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...
- Python基础『二』
目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值 ...
- 机器学习实战基础(三十六):随机森林 (三)之 RandomForestClassifier 之 重要属性和接口
重要属性和接口 至此,我们已经讲完了所有随机森林中的重要参数,为大家复习了一下决策树的参数,并通过n_estimators,random_state,boostrap和oob_score这四个参数帮助 ...
- [Machine Learning & Algorithm] 随机森林(Random Forest)
1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来 ...
- Python机器学习笔记——随机森林算法
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...
- 随机森林(Random Forest)
阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Pyth ...
- 随机森林(Random Forest),决策树,bagging, boosting(Adaptive Boosting,GBDT)
http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 ...
- [Machine Learning & Algorithm] 随机森林(Random Forest)-转载
作者:Poll的笔记 博客出处:http://www.cnblogs.com/maybe2030/ 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 ...
随机推荐
- win如何根据端口号查找并杀死一个线程
查看端口占用 netstat -ano | findstr "端口号" 杀死一个进程 taskkill /pid 进程号 -f
- umich cv-2-1
UMICH CV Linear Classifiers 对于使用线性分类器来进行图片分类,我们可以给出这样的参数化方法: 而对于这样一个式子,我们怎么去理解呢? 首先从代数的角度,这个f(x,W)就是 ...
- android 尺寸适配相关
Android上常见度量单位 px(像素):屏幕上的点,绝对长度,与硬件相关. in(英寸):长度单位. mm(毫米):长度单位. pt(磅):1/72英寸,point. dp(与密度无关的像素):一 ...
- 如何用CRM销售管理系统实现销售目标?
每个企业的销售业务都要制定目标计划,在制定销售计划时要考虑两个问题,一个是计划是否能够严格执行,另一个是计划是否可控,即明确销售目标后,合理分配时间,运用销售基本工作方法严格把控销售进度.那我们该如何 ...
- Redis主从复制部署小结
Redis主从 搭建主从架构 单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离. 主从数据同步原理 全量同步 主从第一次建立连接时,会执行全量同 ...
- vue打包部署遇到的问题
网站上线中遇到的问题(跨域,404,空白页解决方案) 因为本人是后端开发工程师,对前端开发不了解,踩了很多坑,所以将踩过的坑分享出来,以供参考 网站地址:这里 这段时间将项目部署到服务器中引发了几个问 ...
- 机器学习|K邻近(K Nearest-Neighbours)
本文从概念.原理.距离函数.K 值选择.K 值影响..优缺点.应用几方面详细讲述了 KNN 算法 K 近临(K Nearest-Neighbours) 一种简单的监督学习算法,惰性学习算法,在技术上并 ...
- 系统RAM几乎爆满与解决方法
先说一遍,遇事不决就重启! 在电脑长时间运转下某些无良应用程序会产生大量的临时文件(目前我怀疑是有道云笔记) 最终导致系统爆炸 附图 在这种情况下,我下载了RAM实时监测我内存占用情况 结果发现pag ...
- 查找数组中第K大的元素
要查找一个数组中的第 K 大元素,有多种方法可以实现,其中常用的方法是使用分治算法或快速选择算法,这两种方法的时间复杂度到时候O(n). 快速选择算法示例: package main import & ...
- Redis创始人开源最小聊天服务器,仅200行代码,几天功夫已获2.8K Star!
中午时候,在技术交流群里聊起关于Redis创始人的一些趣事,比如离开Redis之后,去写科幻小说之类的. 因为好奇科幻小说,TJ君就去搜索了一下.结果一搜,发现Redis作者最近居然又搞了个新活儿! ...