few-shot-learning for object detection
github https://github.com/LiuXinyu12378/few-shot-learning-for-object-detection
train.py
from __future__ import print_function
import sys import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torchvision import datasets, transforms
from torch.autograd import Variable
from tqdm import tqdm import dataset
import random
import math
import os
from utils import *
from cfg import parse_cfg, cfg
from darknet import Darknet
import pdb # Training settings
# datacfg = sys.argv[1]
# darknetcfg = parse_cfg(sys.argv[2])
# learnetcfg = parse_cfg(sys.argv[3]) datacfg = "cfg/fewyolov3_voc.data"
darknetcfg = parse_cfg("cfg/darknet_yolov3_spp.cfg")
learnetcfg = parse_cfg("cfg/reweighting_net.cfg")
weightfile = "tmp/000050.weights"
if len(sys.argv) == 5:
weightfile = sys.argv[4] data_options = read_data_cfg(datacfg)
net_options = darknetcfg[0]
meta_options = learnetcfg[0] # Configure options
cfg.config_data(data_options)
cfg.config_meta(meta_options)
cfg.config_net(net_options) # Parameters
metadict = data_options['meta']
trainlist = data_options['train'] testlist = data_options['valid']
backupdir = data_options['backup']
gpus = data_options['gpus'] # e.g. 0,1,2,3
ngpus = len(gpus.split(','))
num_workers = int(data_options['num_workers']) batch_size = int(net_options['batch'])
print("batch_size:",batch_size)
max_batches = int(net_options['max_batches'])
learning_rate = float(data_options['learning_rate'])
momentum = float(net_options['momentum'])
decay = float(net_options['decay'])
steps = [float(step) for step in data_options['steps'].split(',')]
scales = [float(scale) for scale in data_options['scales'].split(',')] # Train parameters
use_cuda = True
seed = int(time.time()) ## --------------------------------------------------------------------------
## MAIN
backupdir = cfg.backup
print('logging to ' + backupdir)
if not os.path.exists(backupdir):
os.makedirs(backupdir) torch.manual_seed(seed)
if use_cuda:
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
torch.cuda.manual_seed(seed) model = Darknet(darknetcfg, learnetcfg)
region_loss = model.loss model.print_network()
# if len(sys.argv) == 5:
model.load_weights(weightfile) ###################################################
### Meta-model parameters
region_loss.seen = model.seen
processed_batches = 0 if cfg.tuning else model.seen / batch_size
trainlist = dataset.build_dataset(data_options)
nsamples = len(trainlist)
init_width = model.width
init_height = model.height
init_epoch = 0 if cfg.tuning else model.seen / nsamples
max_epochs = max_batches * batch_size / nsamples + 1
max_epochs = int(math.ceil(cfg.max_epoch * 1. / cfg.repeat)) if cfg.tuning else max_epochs
print(cfg.repeat, nsamples, max_batches, batch_size)
print(num_workers) kwargs = {'num_workers': num_workers, 'pin_memory': True} if use_cuda else {} if use_cuda:
if ngpus > 1:
model = torch.nn.DataParallel(model).cuda()
else:
model = model.cuda() optimizer = optim.Adam(model.parameters(), lr=learning_rate) def adjust_learning_rate(optimizer, processed_batches):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = learning_rate
for i in range(len(steps)):
scale = scales[i] if i < len(scales) else 1
if processed_batches >= steps[i]:
lr = lr * scale
if processed_batches == steps[i]:
break
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr def train(epoch):
global processed_batches
t0 = time.time()
if ngpus > 1:
cur_model = model.module
else:
cur_model = model train_loader = torch.utils.data.DataLoader(
dataset.listDataset(trainlist, shape=(init_width, init_height),
shuffle=False,
transform=transforms.Compose([
transforms.ToTensor(),
]),
train=True,
seen=cur_model.seen,
batch_size=batch_size,
num_workers=num_workers),
batch_size=batch_size, shuffle=False, **kwargs) metaset = dataset.MetaDataset(metafiles=metadict, train=True)
metaloader = torch.utils.data.DataLoader(
metaset,
batch_size=metaset.batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True
)
metaloader = iter(metaloader) lr = adjust_learning_rate(optimizer, processed_batches)
logging('epoch %d/%d, processed %d samples, lr %e' % (epoch, max_epochs, epoch * len(train_loader.dataset), lr)) model.train()
t1 = time.time()
avg_time = torch.zeros(9)
with tqdm(total=train_loader.__len__()) as t: for batch_idx, (data, target) in enumerate(train_loader):
metax, mask = metaloader.next()
t2 = time.time()
adjust_learning_rate(optimizer, processed_batches)
processed_batches = processed_batches + 1
if use_cuda:
data = data.cuda()
metax = metax.cuda()
mask = mask.cuda()
# target= target.cuda()
t3 = time.time()
data, target = Variable(data), Variable(target)
metax, mask = Variable(metax), Variable(mask)
t4 = time.time()
optimizer.zero_grad()
t5 = time.time()
output = model(data, metax, mask)
t6 = time.time()
region_loss.seen = region_loss.seen + data.data.size(0)
cur_model.seen = region_loss.seen
region_loss.input_size = (data.data.size(2), data.data.size(3))
loss,loss_box,loss_conf,loss_cls,cls_acc,recall50,recall75,nProposals = region_loss(output, target)
t.set_description('Epoch %d' % epoch)
t.set_postfix(loss=loss.item(), loss_bbox=loss_box,loss_conf=loss_conf,loss_cls=loss_cls,
cls_acc=cls_acc, recall50=recall50, recall75=recall75,Proposals=nProposals)
t.update() t7 = time.time()
loss.backward()
t8 = time.time()
optimizer.step()
t9 = time.time()
if False and batch_idx > 1:
avg_time[0] = avg_time[0] + (t2 - t1)
avg_time[1] = avg_time[1] + (t3 - t2)
avg_time[2] = avg_time[2] + (t4 - t3)
avg_time[3] = avg_time[3] + (t5 - t4)
avg_time[4] = avg_time[4] + (t6 - t5)
avg_time[5] = avg_time[5] + (t7 - t6)
avg_time[6] = avg_time[6] + (t8 - t7)
avg_time[7] = avg_time[7] + (t9 - t8)
avg_time[8] = avg_time[8] + (t9 - t1)
print('-------------------------------')
print(' load data : %f' % (avg_time[0] / (batch_idx)))
print(' cpu to cuda : %f' % (avg_time[1] / (batch_idx)))
print('cuda to variable : %f' % (avg_time[2] / (batch_idx)))
print(' zero_grad : %f' % (avg_time[3] / (batch_idx)))
print(' forward feature : %f' % (avg_time[4] / (batch_idx)))
print(' forward loss : %f' % (avg_time[5] / (batch_idx)))
print(' backward : %f' % (avg_time[6] / (batch_idx)))
print(' step : %f' % (avg_time[7] / (batch_idx)))
print(' total : %f' % (avg_time[8] / (batch_idx)))
t1 = time.time()
print('')
t1 = time.time()
logging('training with %f samples/s' % (len(train_loader.dataset) / (t1 - t0))) if (epoch + 1) % cfg.save_interval == 0:
logging('save weights to %s/%06d.weights' % (backupdir, epoch + 1))
cur_model.save_weights('%s/%06d.weights' % (backupdir, epoch + 1)) init_epoch = int(init_epoch)
max_epochs = int(max_epochs)
print("init_epoch:",init_epoch)
print("max_epochs:",max_epochs)
for epoch in range(init_epoch, max_epochs):
train(epoch)
region_loss.py
import time
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
from utils import *
from cfg import cfg
from numbers import Number
from random import random, randint
import pdb def neg_filter(pred_boxes, target, withids=False):
assert pred_boxes.size(0) == target.size(0)
if cfg.neg_ratio == 'full':
inds = list(range(pred_boxes.size(0)))
elif isinstance(cfg.neg_ratio, Number):
flags = torch.sum(target, 1) != 0
flags = flags.cpu().data.tolist()
ratio = cfg.neg_ratio * sum(flags) * 1. / (len(flags) - sum(flags))
if ratio >= 1:
inds = list(range(pred_boxes.size(0)))
else:
flags = [0 if f == 0 and random() > ratio else 1 for f in flags]
inds = np.argwhere(flags).squeeze()
pred_boxes, target = pred_boxes[inds], target[inds]
else:
raise NotImplementedError('neg_ratio not recognized')
if withids:
return pred_boxes, target, inds
else:
return pred_boxes, target def neg_filter_v2(pred_boxes, target, withids=False):
assert pred_boxes.size(0) == target.size(0)
if cfg.neg_ratio == 'full':
inds = list(range(pred_boxes.size(0)))
elif isinstance(cfg.neg_ratio, Number):
flags = torch.sum(target, 1) != 0
flags = flags.cpu().data.tolist()
ratio = cfg.neg_ratio * sum(flags) * 1. / (len(flags) - sum(flags))
if ratio >= 1:
inds = list(range(pred_boxes.size(0)))
else:
flags = [0 if f == 0 and random() > ratio else 1 for f in flags]
if sum(flags) == 0:
flags[randint(0, len(flags) - 1)] = 1
inds = np.nonzero(flags)[0]
pred_boxes, target = pred_boxes[inds], target[inds]
else:
raise NotImplementedError('neg_ratio not recognized')
if withids:
return pred_boxes, target, inds
else:
return pred_boxes, target def build_targets(pred_boxes, target, conf, anchors, num_anchors, feature_size, input_size, ignore_thresh):
nB = target.size(0)
nA = num_anchors
# print('anchor_step: ', anchor_step)
obj_mask = torch.cuda.ByteTensor(nB, nA, feature_size[0], feature_size[1]).fill_(0)
noobj_mask = torch.cuda.ByteTensor(nB, nA, feature_size[0], feature_size[1]).fill_(1)
tx = torch.zeros(nB, nA, feature_size[0], feature_size[1]).cuda()
ty = torch.zeros(nB, nA, feature_size[0], feature_size[1]).cuda()
tw = torch.zeros(nB, nA, feature_size[0], feature_size[1]).cuda()
th = torch.zeros(nB, nA, feature_size[0], feature_size[1]).cuda()
tcls = torch.zeros(nB, nA, feature_size[0], feature_size[1]).cuda()
iou_scores = torch.zeros(nB, nA, feature_size[0], feature_size[1]).cuda() tboxes = target.view(-1, 5)
nonzero_ind = tboxes[:, 3] > 0
tboxes = tboxes[nonzero_ind.unsqueeze(1).repeat(1, 5)].view(-1, 5)
ind_B = torch.linspace(0, nB - 1, nB).unsqueeze(1).repeat(1, 50).view(-1).long().cuda()
ind_B = ind_B[nonzero_ind]
gx = (tboxes[:, 1] * feature_size[1]).float()
gy = (tboxes[:, 2] * feature_size[0]).float()
gw = (tboxes[:, 3] * input_size[1]).float()
gh = (tboxes[:, 4] * input_size[0]).float()
aw = anchors[:, 0]
ah = anchors[:, 1]
nbox = tboxes.size(0)
gt_box = torch.cat([torch.zeros(1, nbox).cuda(), torch.zeros(1, nbox).cuda(), gw.unsqueeze(0), gh.unsqueeze(0)], 0)
anchor_box = torch.cat([torch.zeros(1, nA).cuda(), torch.zeros(1, nA).cuda(), aw.unsqueeze(0), ah.unsqueeze(0)], 0)
ious = bbox_ious(gt_box.unsqueeze(2).repeat(1, 1, nA), anchor_box.unsqueeze(1).repeat(1, nbox, 1), x1y1x2y2=False)
best_ious, best_a = ious.max(1)
gj = gy.long()
gi = gx.long()
obj_mask[ind_B, best_a, gj, gi] = 1
noobj_mask[ind_B, best_a, gj, gi] = 0 for i, iou in enumerate(ious):
if (iou > ignore_thresh).sum():
noobj_mask[ind_B[i:i + 1], (iou > ignore_thresh).nonzero().squeeze(1), gj[i:i + 1], gi[i:i + 1]] = 0 tx[ind_B, best_a, gj, gi] = gx - gx.floor()
ty[ind_B, best_a, gj, gi] = gy - gy.floor()
tw[ind_B, best_a, gj, gi] = torch.log(gw / anchors[best_a][:, 0])
th[ind_B, best_a, gj, gi] = torch.log(gh / anchors[best_a][:, 1])
tcls[ind_B, best_a, gj, gi] = tboxes[:, 0].float()
tconf = obj_mask.float()
pred_boxes = pred_boxes.contiguous().view(nB, nA, feature_size[0], feature_size[1], 4).cuda()
conf = conf.contiguous().view(nB, nA, feature_size[0], feature_size[1]).data
target_boxes = torch.cat([(tboxes[:, 1] * input_size[1]).float().unsqueeze(0),
(tboxes[:, 2] * input_size[0]).float().unsqueeze(0),
gw.unsqueeze(0),
gh.unsqueeze(0)], 0) iou_scores[ind_B, best_a, gj, gi] = bbox_ious(pred_boxes[ind_B, best_a, gj, gi].t(), target_boxes, x1y1x2y2=False)
conf50 = (conf[ind_B, best_a, gj, gi] > 0.5).float()
detected50 = (iou_scores[ind_B, best_a, gj, gi] > 0.5).float() * conf50
detected75 = (iou_scores[ind_B, best_a, gj, gi] > 0.75).float() * conf50 return nbox, iou_scores, obj_mask, noobj_mask, tx, ty, tw, th, tconf, tcls, detected50, detected75 class RegionLoss(nn.Module):
def __init__(self, num_classes=0, anchors=[], num_anchors=1):
super(RegionLoss, self).__init__()
self.num_classes = num_classes
self.anchors = anchors
self.num_anchors = num_anchors
self.anchor_step = len(anchors) / num_anchors
self.coord_scale = 1
self.noobject_scale = 1
self.object_scale = 5
self.class_scale = 1
self.thresh = 0.6
self.seen = 0 def forward(self, output, target):
# import pdb; pdb.set_trace()
# output : BxAs*(4+1+num_classes)*H*W # if target.dim() == 3:
# # target : B * n_cls * l
# l = target.size(-1)
# target = target.permute(1,0,2).contiguous().view(-1, l)
if target.dim() == 3:
target = target.view(-1, target.size(-1))
bef = target.size(0)
output, target = neg_filter(output, target)
# print("{}/{}".format(target.size(0), bef)) t0 = time.time()
nB = output.data.size(0)
nA = self.num_anchors
nC = self.num_classes
nH = output.data.size(2)
nW = output.data.size(3) output = output.view(nB, nA, (5 + nC), nH, nW)
x = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([0]))).view(nB, nA, nH, nW))
y = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([1]))).view(nB, nA, nH, nW))
w = output.index_select(2, Variable(torch.cuda.LongTensor([2]))).view(nB, nA, nH, nW)
h = output.index_select(2, Variable(torch.cuda.LongTensor([3]))).view(nB, nA, nH, nW)
conf = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([4]))).view(nB, nA, nH, nW))
# [nB, nA, nC, nW, nH] | (bs, 5, 1, 13, 13)
cls = output.index_select(2, Variable(torch.linspace(5, 5 + nC - 1, nC).long().cuda()))
cls = cls.view(nB * nA, nC, nH * nW).transpose(1, 2).contiguous().view(nB * nA * nH * nW, nC) t1 = time.time() pred_boxes = torch.cuda.FloatTensor(4, nB * nA * nH * nW)
grid_x = torch.linspace(0, nW - 1, nW).repeat(nH, 1).repeat(nB * nA, 1, 1).view(nB * nA * nH * nW).cuda()
grid_y = torch.linspace(0, nH - 1, nH).repeat(nW, 1).t().repeat(nB * nA, 1, 1).view(nB * nA * nH * nW).cuda()
anchor_w = torch.Tensor(self.anchors).view(nA, self.anchor_step).index_select(1, torch.LongTensor([0])).cuda()
anchor_h = torch.Tensor(self.anchors).view(nA, self.anchor_step).index_select(1, torch.LongTensor([1])).cuda()
anchor_w = anchor_w.repeat(nB, 1).repeat(1, 1, nH * nW).view(nB * nA * nH * nW)
anchor_h = anchor_h.repeat(nB, 1).repeat(1, 1, nH * nW).view(nB * nA * nH * nW)
pred_boxes[0] = x.data + grid_x
pred_boxes[1] = y.data + grid_y
pred_boxes[2] = torch.exp(w.data) * anchor_w
pred_boxes[3] = torch.exp(h.data) * anchor_h
pred_boxes = convert2cpu(pred_boxes.transpose(0, 1).contiguous().view(-1, 4))
t2 = time.time() nGT, nCorrect, coord_mask, conf_mask, cls_mask, tx, ty, tw, th, tconf, tcls = build_targets(pred_boxes,
target.data,
self.anchors, nA,
nC, \
nH, nW,
self.noobject_scale,
self.object_scale,
self.thresh,
self.seen)
cls_mask = (cls_mask == 1)
if cfg.metayolo:
tcls.zero_()
nProposals = int((conf > 0.25).float().sum().data[0]) tx = Variable(tx.cuda())
ty = Variable(ty.cuda())
tw = Variable(tw.cuda())
th = Variable(th.cuda())
tconf = Variable(tconf.cuda())
tcls = Variable(tcls.view(-1)[cls_mask].long().cuda()) coord_mask = Variable(coord_mask.cuda())
conf_mask = Variable(conf_mask.cuda().sqrt())
cls_mask = Variable(cls_mask.view(-1, 1).repeat(1, nC).cuda())
cls = cls[cls_mask].view(-1, nC) t3 = time.time() loss_x = self.coord_scale * nn.MSELoss(size_average=False)(x * coord_mask, tx * coord_mask) / 2.0
loss_y = self.coord_scale * nn.MSELoss(size_average=False)(y * coord_mask, ty * coord_mask) / 2.0
loss_w = self.coord_scale * nn.MSELoss(size_average=False)(w * coord_mask, tw * coord_mask) / 2.0
loss_h = self.coord_scale * nn.MSELoss(size_average=False)(h * coord_mask, th * coord_mask) / 2.0
loss_conf = nn.MSELoss(size_average=False)(conf * conf_mask, tconf * conf_mask) / 2.0
loss_cls = self.class_scale * nn.CrossEntropyLoss(size_average=False)(cls, tcls)
loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls
t4 = time.time()
if False:
print('-----------------------------------')
print(' activation : %f' % (t1 - t0))
print(' create pred_boxes : %f' % (t2 - t1))
print(' build targets : %f' % (t3 - t2))
print(' create loss : %f' % (t4 - t3))
print(' total : %f' % (t4 - t0))
print('%d: nGT %d, recall %d, proposals %d, loss: x %f, y %f, w %f, h %f, conf %f, cls %f, total %f' % (
self.seen, nGT, nCorrect, nProposals, loss_x.data[0], loss_y.data[0], loss_w.data[0], loss_h.data[0],
loss_conf.data[0], loss_cls.data[0], loss.data[0]))
return loss class RegionLossV2(nn.Module):
"""
Yolo region loss + Softmax classification across meta-inputs
""" def __init__(self, num_classes=0, anchors=[], num_anchors=1, input_size=(832, 832)):
super(RegionLossV2, self).__init__()
self.num_classes = num_classes
self.anchors = anchors
self.num_anchors = num_anchors
self.coord_scale = 1
self.class_scale = 1
self.obj_scale = 1
self.noobj_scale = 100
self.thresh = 0.5
self.seen = 0
self.input_size = input_size
self.feature_scale = [32, 16, 8]
print('class_scale', self.class_scale) def forward(self, output, target):
# output : (bs*cs, nA*(5+1), N)
# target : (bs, cs, 50*5)
# Get all classification prediction
# pdb.set_trace()
bs = target.size(0)
cs = target.size(1)
nA = self.num_anchors
nC = self.num_classes
N = output.data.size(2)
# feature_size = [[26, 26], [52, 52], [104, 104]]
cls = output.view(output.size(0), nA, (5 + nC), N)
cls = cls.index_select(2, Variable(torch.linspace(5, 5 + nC - 1, nC).long().cuda())).squeeze()
cls = cls.view(bs, cs, nA * N).transpose(1, 2).contiguous().view(bs * nA * N, cs)
cls_conf = F.softmax(cls, 1)
_, cls_max_ids = torch.max(cls_conf, 1)
cls_max_ids = cls_max_ids.data
pre_cls_mask = torch.zeros(bs * nA * N, cs).cuda()
pre_cls_mask[torch.linspace(0, bs * nA * N - 1, bs * nA * N).long().cuda(), cls_max_ids] = 1
pre_cls_mask = pre_cls_mask.view(bs, nA * N, cs).transpose(1, 2).contiguous().view(bs * cs, nA, N) # Rearrange target and perform filtering operation
target = target.view(-1, target.size(-1))
# bef = target.size(0)
output, target, inds = neg_filter_v2(output, target, withids=True)
counts, _ = np.histogram(inds, bins=bs, range=(0, bs * cs))
# print("{}/{}".format(target.size(0), bef))
pre_cls_mask = pre_cls_mask[inds] t0 = time.time()
nB = output.data.size(0) output = output.view(nB, nA, (5 + nC), N) # (nB, nA, (5+nC), N)
x = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([0]))).squeeze(2)) # (nB, nA, N)
y = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([1]))).squeeze(2))
w = output.index_select(2, Variable(torch.cuda.LongTensor([2]))).squeeze(2)
h = output.index_select(2, Variable(torch.cuda.LongTensor([3]))).squeeze(2)
conf = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([4]))).squeeze(2))
# [nB, nA, nC, nW, nH] | (bs, 5, 1, 13, 13)
# cls = output.index_select(2, Variable(torch.linspace(5,5+nC-1,nC).long().cuda()))
# cls = cls.view(nB*nA, nC, nH*nW).transpose(1,2).contiguous().view(nB*nA*nH*nW, nC)
t1 = time.time() pred_boxes = torch.cuda.FloatTensor(4, nB, nA, N)
grid_x = []
grid_y = []
anchor_w = []
anchor_h = []
scale = []
feature_size = []
for fs in self.feature_scale:
feature_h = self.input_size[0] // fs
feature_w = self.input_size[1] // fs
# print("feature_h:",feature_h)
# print("feature_w:",feature_w)
feature_size.append([feature_h, feature_w])
grid_x.append(torch.linspace(0, feature_w - 1, feature_w).repeat(feature_h, 1) \
.repeat(nB * nA, 1, 1).view(nB, nA, feature_h * feature_w).cuda())
grid_y.append(torch.linspace(0, feature_h - 1, feature_h).repeat(feature_w, 1).t() \
.repeat(nB * nA, 1, 1).view(nB, nA, feature_h * feature_w).cuda())
scale.append((torch.ones(nB, nA, feature_h * feature_w) * fs).cuda())
grid_x = torch.cat(grid_x, 2) # (nB, nA, N)
grid_y = torch.cat(grid_y, 2)
scale = torch.cat(scale, 2)
for i in range(3):
aw = torch.Tensor(self.anchors[6 * i:6 * (i + 1)]).view(nA, -1) \
.index_select(1, torch.LongTensor([0])).cuda()
ah = torch.Tensor(self.anchors[6 * i:6 * (i + 1)]).view(nA, -1) \
.index_select(1, torch.LongTensor([1])).cuda()
anchor_w.append(aw.repeat(nB, feature_size[i][0] * feature_size[i][1]) \
.view(nB, nA, feature_size[i][0] * feature_size[i][1]))
anchor_h.append(ah.repeat(nB, feature_size[i][0] * feature_size[i][1]) \
.view(nB, nA, feature_size[i][0] * feature_size[i][1]))
anchor_w = torch.cat(anchor_w, 2)
anchor_h = torch.cat(anchor_h, 2)
pred_boxes[0] = (x.data + grid_x) * scale
pred_boxes[1] = (y.data + grid_y) * scale
pred_boxes[2] = torch.exp(w.data) * anchor_w
pred_boxes[3] = torch.exp(h.data) * anchor_h
pred_boxes = convert2cpu(pred_boxes.permute(1, 2, 3, 0).contiguous()) # (nB, nA, N, 4)
t2 = time.time()
nGT = 0
iou_scores = []
obj_mask = []
noobj_mask = []
tx = []
ty = []
tw = []
th = []
tconf = []
tcls = []
start_N = 0
detected50 = torch.zeros(0)
detected75 = torch.zeros(0)
for imap in range(3):
nGT, iou_scores_temp, obj_mask_temp, noobj_mask_temp, tx_temp, ty_temp, tw_temp, th_temp, tconf_temp, \
tcls_temp, detected50_temp, detected75_temp = build_targets(
pred_boxes[:, :, start_N:start_N + feature_size[imap][0] * feature_size[imap][1], :],
target.data.cuda(),
conf[:, :, start_N:start_N + feature_size[imap][0] * feature_size[imap][1]],
torch.Tensor(self.anchors[6 * imap:6 * (imap + 1)]).view(nA, -1).cuda(),
nA,
feature_size[imap],
self.input_size,
self.thresh)
if not len(detected50):
detected50 = torch.zeros(nGT).cuda()
if not len(detected75):
detected75 = torch.zeros(nGT).cuda()
detected50 += detected50_temp
detected75 += detected75_temp
start_N += feature_size[imap][0] * feature_size[imap][1]
iou_scores.append(iou_scores_temp.view(nB, nA, feature_size[imap][0] * feature_size[imap][1]))
obj_mask.append(obj_mask_temp.view(nB, nA, feature_size[imap][0] * feature_size[imap][1]))
noobj_mask.append(noobj_mask_temp.view(nB, nA, feature_size[imap][0] * feature_size[imap][1]))
tx.append(tx_temp.view(nB, nA, feature_size[imap][0] * feature_size[imap][1]))
ty.append(ty_temp.view(nB, nA, feature_size[imap][0] * feature_size[imap][1]))
tw.append(tw_temp.view(nB, nA, feature_size[imap][0] * feature_size[imap][1]))
th.append(th_temp.view(nB, nA, feature_size[imap][0] * feature_size[imap][1]))
tconf.append(tconf_temp.view(nB, nA, feature_size[imap][0] * feature_size[imap][1]))
tcls.append(tcls_temp.view(nB, nA, feature_size[imap][0] * feature_size[imap][1])) iou_scores = torch.cat(iou_scores, 2)
obj_mask = torch.cat(obj_mask, 2)
noobj_mask = torch.cat(noobj_mask, 2)
tx = torch.cat(tx, 2)
ty = torch.cat(ty, 2)
tw = torch.cat(tw, 2)
th = torch.cat(th, 2)
tconf = torch.cat(tconf, 2)
tcls = torch.cat(tcls, 2) # Take care of class mask
idx_start = 0
cls_mask_list = []
tcls_list = []
for i in range(len(counts)):
if counts[i] == 0:
cur_mask = torch.zeros(nA, N).cuda()
cur_tcls = torch.zeros(nA, N).cuda()
else:
cur_mask = torch.sum(obj_mask[idx_start:idx_start + counts[i]].float(), dim=0)
cur_tcls = torch.sum(tcls[idx_start:idx_start + counts[i]], dim=0)
cls_mask_list.append(cur_mask)
tcls_list.append(cur_tcls)
idx_start += counts[i]
cls_mask = torch.stack(cls_mask_list) # (bs, nA, N)
tcls = torch.stack(tcls_list) cls_mask = (cls_mask == 1)
conf50 = (conf > 0.5).float().data
iou50 = (iou_scores > 0.5).float()
detected_mask = conf50 * tconf
precision = torch.sum(iou50 * detected_mask) / (conf50.sum() + 1e-16)
detected50 = (detected50 > 0).float()
detected75 = (detected75 > 0).float()
recall50 = detected50.sum() / (nGT + 1e-16)
recall75 = detected75.sum() / (nGT + 1e-16)
nProposals = int((conf > 0.25).float().sum().item())
tx = Variable(tx)
ty = Variable(ty)
tw = Variable(tw)
th = Variable(th)
tconf = Variable(tconf) obj_mask = Variable(obj_mask.bool())
noobj_mask = Variable(noobj_mask.bool())
# cls_mask = Variable(cls_mask.view(-1, 1).repeat(1,cs).cuda())
cls = cls[Variable(cls_mask.view(-1, 1).repeat(1, cs))].view(-1, cs)
cls_max_ids = cls_max_ids[cls_mask.view(-1)]
tcls = Variable(tcls[cls_mask].long())
cls_acc = float(torch.sum(cls_max_ids == tcls.data)) / (cls_max_ids.numel() + 1e-16) ClassificationLoss = nn.CrossEntropyLoss()
MseLoss = nn.MSELoss()
BceLoss = nn.BCELoss() t3 = time.time() loss_x = self.coord_scale * MseLoss(x[obj_mask], tx[obj_mask])
loss_y = self.coord_scale * MseLoss(y[obj_mask], ty[obj_mask])
loss_w = self.coord_scale * MseLoss(w[obj_mask], tw[obj_mask])
loss_h = self.coord_scale * MseLoss(h[obj_mask], th[obj_mask])
loss_conf_obj = BceLoss(conf[obj_mask], tconf[obj_mask])
loss_conf_noobj = BceLoss(conf[noobj_mask], tconf[noobj_mask])
loss_conf = self.obj_scale * loss_conf_obj + self.noobj_scale * loss_conf_noobj
if len(cls):
loss_cls = self.class_scale * ClassificationLoss(cls, tcls)
else:
loss_cls = Variable(torch.Tensor([0]).float().cuda()) # # pdb.set_trace()
# ids = [9,11,12,16]
# new_cls, new_tcls = select_classes(cls, tcls, ids)
# new_tcls = Variable(torch.from_numpy(new_tcls).long().cuda())
# loss_cls_new = self.class_scale * nn.CrossEntropyLoss(size_average=False)(new_cls, new_tcls)
# loss_cls_new *= 10
# loss_cls += loss_cls_new loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls
t4 = time.time()
if False:
print('-----------------------------------')
print(' activation : %f' % (t1 - t0))
print(' create pred_boxes : %f' % (t2 - t1))
print(' build targets : %f' % (t3 - t2))
print(' create loss : %f' % (t4 - t3))
print(' total : %f' % (t4 - t0))
# print(
# '%d: nGT %d, precision %f, recall50 %f, recall75 %f, cls_acc %f, loss: x %f, y %f, w %f, h %f, conf %f, cls %f, total %f' % \
# (self.seen, nGT, precision, recall50, recall75, cls_acc, loss_x.item(), loss_y.item(), \
# loss_w.item(), loss_h.item(), loss_conf.item(), loss_cls.item(), loss.item()))
# print('%d: nGT %d, recall %d, proposals %d, loss: x %f, y %f, w %f, h %f, conf %f, cls %f, cls_new %f, total %f' % (self.seen, nGT, nCorrect, nProposals, loss_x.data[0], loss_y.data[0], loss_w.data[0], loss_h.data[0], loss_conf.data[0], loss_cls.data[0], loss_cls_new.data[0], loss.data[0]))
return loss,loss_x.item() + loss_y.item() + loss_w.item() + loss_h.item(),loss_conf.item(),loss_cls.item(),cls_acc,recall50.item(),recall75.item(),nProposals def select_classes(pred, tgt, ids):
# convert tgt to numpy
tgt = tgt.cpu().data.numpy()
new_tgt = [(tgt == d) * i for i, d in enumerate(ids)]
new_tgt = np.max(np.stack(new_tgt), axis=0)
idxes = np.argwhere(new_tgt > 0).squeeze()
new_pred = pred[idxes]
new_pred = new_pred[:, ids]
new_tgt = new_tgt[idxes]
return new_pred, new_tgt
few-shot-learning for object detection的更多相关文章
- deep learning on object detection
回归工作一周,忙的头晕,看了两三篇文章,主要在写各种文档和走各种办事流程了-- 这次来写写object detection最近看的三篇文章吧.都不是最近的文章,但是是今年的文章,我也想借此让自己赶快熟 ...
- 论文阅读笔记五十三:Libra R-CNN: Towards Balanced Learning for Object Detection(CVPR2019)
论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构 ...
- Object detection with deep learning and OpenCV
目录 Single Shot Detectors for Object Detection Deep learning-based object detection with OpenCV 这篇文 ...
- (转)Awesome Object Detection
Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...
- [Arxiv1706] Few-Example Object Detection with Model Communication 论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p. ...
- object detection 总结
1.基础 自己对于YOLOV1,2,3都比较熟悉. RCNN也比较熟悉.这个是自己目前掌握的基础2.第一步 看一下2019年的井喷的anchor free的网络3.第二步 看一下以往,引用多的网路4. ...
- 关于目标检测(Object Detection)的文献整理
本文对CV中目标检测子方向的研究,整理了如下的相关笔记(持续更新中): 1. Cascade R-CNN: Delving into High Quality Object Detection 年份: ...
- 论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey
目录 写在前面 目标检测任务与挑战 目标检测方法汇总 基础子问题 基于DCNN的特征表示 主干网络(network backbone) Methods For Improving Object Rep ...
- 课程四(Convolutional Neural Networks),第三 周(Object detection) —— 0.Learning Goals
Learning Goals: Understand the challenges of Object Localization, Object Detection and Landmark Find ...
- 论文阅读之: Hierarchical Object Detection with Deep Reinforcement Learning
Hierarchical Object Detection with Deep Reinforcement Learning NIPS 2016 WorkShop Paper : https://a ...
随机推荐
- (广州南沙)vue知识点整理2021,主要是防止忘记防备快速翻看
/////////////////////////// vue 中使用路由技巧:router //////////////////////////////// 写笔记说明,之前在江门工作 ...
- 一文学会JDBC实现java和mySQL的数据连接(尚硅谷学习课程代码+笔记+思路总结)
JDBC是指数据库连接技术,用于java连接mySQL等数据库.本文详细介绍了尚硅谷课程中JDBC的学习内容和补充知识. 概述 java语言只提供规范接口,存在于java.sql.javax.sql包 ...
- Android Studio导出APP的数据库db文件
原文地址:Android Studio导出APP的数据库db文件 | Stars-One的杂货小窝 最近项目开发需要使用到Android内置的Sqlite存数据,但是公司里没有对应的调试环境,只能让现 ...
- IO 多路复用原理
IO 多路复用 普通情况下,一个进程只能监视一个文件描述符(阻塞),如果使用非阻塞 IO,则会使 CPU 频繁陷入内核和空转,降低效率.而IO 多路复用是操作系统提供的接口,他会帮你同时监视多个 fd ...
- 毕设系列之Libx264实时视频流(YUV 420P转H264视频编码篇)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- 面试官:SpringBoot如何优雅停机?
优雅停机(Graceful Shutdown) 是指在服务器需要关闭或重启时,能够先处理完当前正在进行的请求,然后再停止服务的操作. 优雅停机的实现步骤主要分为以下几步: 停止接收新的请求:首先,系统 ...
- python面向对象(反射、内置方法、元类)
一 反射 # 静态语言:在执行前就定义好数据类型 # var x int=8 # 动态语言:在执行的时候,才识别数据类型 # x = 8 # 什么是反射? # 指的是在程序运行过程中可以"动 ...
- 记录--Cesium+Vue实战教程——地图导航
这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 项目效果 我们今天要实现的是一个路径规划的功能,有两个输入框.输入起点终点,然后查询,得到规划的路径,效果如下: 我们会用到以下库: Ax ...
- 记录--Uniapp + TypeScript 配置文档
这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 0 目标 使用 uniapp + TypeScript 为基础栈进行小程序开发 uniapp 是一个使用 Vue.js 开发所有前端应用 ...
- RMI反序列化分析
RMI介绍 RMI全程Remote Method Invocation (远程方法引用),RMI有客户端和服务端,还有一个注册中心,在java中客户端可以通过RMI调用服务端的方法,流程图如下: 服务 ...