摘要:Raft算法是一种分布式共识算法,用于解决分布式系统中的一致性问题。

本文分享自华为云社区《共识算法之Raft算法模拟数》,作者: TiAmoZhang 。

01、Leader选举

存在A、B、C三个成员组成的Raft集群,刚启动时,每个成员都处于Follower状态,其中,成员A心跳超时为110ms,成员B心跳超时为150ms,成员C心跳超时为130ms,其他相关信息如图1所示。

■ 图1 Raft模拟初始状态

由于集群中不存在Leader,A、B、C三个成员都不会收到来自Leader的心跳信息。其中,成员A的超时最短,最先进入选举状态,修改自己的状态为Candidate,并增加自己的任期编号为1,发起请求投票消息,如图2所示。

■ 图2 请求投票

成员A通过RequestVote广播自己的选票给成员B、C,选票描述了成员A所拥有的数据,其包含成员A所处的term及最新的日志索引。成员B、C根据投票规则处理RequestVote消息。

term大的成员拒绝投票给term小的成员。

日志索引大的成员拒绝投票给日志索引小的成员。

一个term内只投出一张选票,采用先来先获得投票的原则。

很明显,成员B、C的term小于成员A的term,也不存在比成员A日志索引更大的日志索引,并且term为1的选票还没有投给其他成员,因此成员B、C将term为1的选票投给成员A并更新自己的term为1。

成员A获得包括自己在内的3张选票,赢得大多数选票,成员A晋升为Leader,并向其他成员发送心跳信息,维护自己的领导地位,如图3所示。

■ 图3 Leader晋升示意

如果成员A在等待投票超过约定的时间内没有收到多数派的选票,则会重置自己的超时,并结束本次选举进程。接着会有其他成员在等待心跳超时后发起Leader选举,在当前案例中,发起Leader选举的顺序为A→C→B。

可能因为网络问题,使集群中的所有成员又发起了一轮选举,但是都没有获得多数派的选票,因此会随机产生新的超时,开始下一个循环的选举。

02、日志复制

日志复制是一个一阶段协商的过程,其中,日志项的提交操作由下一轮协商或者心跳消息来代替完成。因此处理事务请求,Raft只需要发送一轮AppendEntries消息即可。

AppendEntries消息除了会包含需要复制日志项的相关信息外,通常会携带Leader的committedIndex参数,标示着最后一个已提交的日志索引。每个Follower的本地都维护了committedIndex,Follower可以对比Leader的committedIndex来推进自己的提交操作。

接着如图3所示的示例,一个三个成员组成的集群,成员A为Leader,成员B和C为Follower,并且在集群中未提交任何日志项。Leader收到客户端发送的Add请求后,Leader和Follower依次执行以下步骤,如图4所示。

■ 图4 日志复制-复制

(1)Leader将其封装成日志项追加到本地的日志中,日志索引为1。

(2)Leader通过AppendEntries(0, <1, Add>)消息时将日志项广播给所有的Follower。其中:

  • 第一个参数为committedIndex,即Leader最后提交的日志索引。
  • 第二个参数为Leader所处的日志索引,即Add日志项的索引。
  • 第三个参数为事务操作指令,即客户端的指令。

(3)Follower收到消息,将日志项追加到本地的日志中。

此时,成员A、B、C都拥有日志项Add且都已在索引为1上完成了持久化。Follower在处理完AppendEntries消息后需要回复ACK消息给Leader,代表接受该日志项。Leader收到多数派的ACK消息后,可以在本地提交该日志项并执行状态转移,之后将执行结果返回给客户端,如图5所示。

■ 图5 日志复制-回复

在当前场景中,成员A提交了索引为1的日志项,成员B、C仅仅拥有索引为1的日志项的所有信息但并未提交。成员B、C需要等待下一次AppendEntries消息,根据其committedIndex推进索引为1的日志项的提交操作。以心跳的AppendEntries消息为例,该AppendEntries消息仅携带了committedIndex,此时Leader已经提交了索引为1的日志项,因此committedIndex为1。Follower则可以提交索引为1及其之前的所有日志项,如图6所示。

■ 图6 日志复制-心跳

03、日志对齐

我们使用<term, logIndex>表示一个日志项,如表1所示为Follower E的日志索引3和Follower D的日志索引4,与当前Leader处理不一致的情况。出现这种情况可能是Follower E和Follower D曾经当选过Leader,并且在自己的term上提出了日志索引为3和4的日志项后立即宕机造成的。

■ 表1 日志对齐

要使Follower E和Follower D与Leader数据保持一致,大致步骤分为两步:寻找nextIndex,复制nextIndex及其之后的日志项。在Raft中,这个步骤均可由AppendEntries消息来完成。这里以Follower E成员为例,交互细节如下:

(1)Leader为Follower E初始化nextIndex,nextIndex=lastLogIndex+1,即nextIndex=6+1=7。

(2)Leader通过AppendEntries发送探测消息,携带preLogIndex(nextIndex-1)及preLogTerm,其中,preLogIndex=6,preLogTerm=3。

(3)Follower收到探测消息,对比索引为6的日志项,返回失败的响应给Leader并携带lastLogIndex=3。

(4)Leader收到失败的响应,更新nextIndex=lastLogIndexmsg+1,即nextIndex=4。

(5)Leader发送下一轮的探测消息,其中,preLogIndex=3,preLogTerm=2。

(6)Follower收到探测消息,对比索引为3的日志项,返回失败的响应给Leader并携带lastLogIndex=3。

(7)Leader收到失败的响应,此时lastLogIndexmsg+1 ≤ nextIndex,则nextIndex单调递减为3。

(8)Leader发送下一轮的探测消息,其中,preLogIndex=2,preLogTerm=1。

(9)Follower收到探测消息,对比索引为2的日志项,返回探测成功的响应给Leader。

(10)Leader在成功探测到nextIndex之后,通过AppendEntries消息从nextIndex开始发送索引为3的日志项给Follower。

(11)Follower将以Leader的数据为准,覆盖本地的日志项并返回处理成功的响应给Leader。

(12)Leader收到成功响应后,单调递增nextIndex,继续发送下一个日志项。直到nextIndex等于Leader的lastLogIndex,意味着该Follower拥有Leader所有的数据,本次日志对齐即完成。

点击关注,第一时间了解华为云新鲜技术~

详解共识算法的Raft算法模拟数的更多相关文章

  1. 分布式共识算法 (三) Raft算法

    系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.引子 1.1 介绍 Raft 是一种为了管 ...

  2. 分布式一致性算法:Raft 算法(论文翻译)

    Raft 算法是可以用来替代 Paxos 算法的分布式一致性算法,而且 raft 算法比 Paxos 算法更易懂且更容易实现.本文对 raft 论文进行翻译,希望能有助于读者更方便地理解 raft 的 ...

  3. 【转】分布式一致性算法:Raft 算法(Raft 论文翻译)

    编者按:这篇文章来自简书的一个位博主Jeffbond,读了好几遍,翻译的质量比较高,原文链接:分布式一致性算法:Raft 算法(Raft 论文翻译),版权一切归原译者. 同时,第6部分的集群成员变更读 ...

  4. 详解 volatile关键字 与 CAS算法

    (请观看本人博文 -- <详解 多线程>) 目录 内存可见性问题 volatile关键字 CAS算法: 扩展 -- 乐观锁 与 悲观锁: 悲观锁: 乐观锁: 在讲解本篇博文的知识点之前,本 ...

  5. 详解十大经典数据挖掘算法之——Apriori

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第19篇文章,我们来看经典的Apriori算法. Apriori算法号称是十大数据挖掘算法之一,在大数据时代威风无两,哪 ...

  6. 详解十大经典机器学习算法——EM算法

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第14篇文章,我们来聊聊大名鼎鼎的EM算法. EM算法的英文全称是Expectation-maximization al ...

  7. Redis中算法之——Raft算法

    Sentinel系统选举领头的方法是对Raft算法的领头选举方法的实现. 在分布式系统中一致性是很重要的.1990年Leslie Lamport提出基于消息传递的一致性算法Paxos算法,解决分布式系 ...

  8. 详解BarTender符号体系特殊选项之“行数”

    上面两篇文章小编和大家分享了BarTender符号体系特殊选项中的“行高”和“列”.此外,某些二维 (2D) 符号体系的结构为多个信息行,每一行看上去都像一个非常窄的条形码. 例如,以下图像是含 3 ...

  9. ulimit 命令详解 socket查看linux最大文件打开数

    ulimit 命令详解     Linux对于每个用户,系统限制其最大进程数.为提高性能,可以根据设备资源情况,设置各linux 用户的最大进程数 可以用ulimit -a 来显示当前的各种用户进程限 ...

  10. Lua5.4源码剖析:二. 详解String数据结构及操作算法

    概述 lua字符串通过操作算法和内存管理,有以下优点: 节省内存. 字符串比较效率高.(比较哈希值) 问题: 相同的字符串共享同一份内存么? 相同的长字符串一定不共享同一份内存么? lua字符串如何管 ...

随机推荐

  1. Java Stream常见用法汇总,开发效率大幅提升

    本文已经收录到Github仓库,该仓库包含计算机基础.Java基础.多线程.JVM.数据库.Redis.Spring.Mybatis.SpringMVC.SpringBoot.分布式.微服务.设计模式 ...

  2. 关于Java中代码的执行顺序

    结论 注意 只有显式的加载类 JVM才会加载到内存中 先加载父类的静态代码块 然后执行子类静态代码块 当前类存在类静态变量注意引用类型没进行赋值操作初始化为null 并不会显式的加载类又存在静态代码块 ...

  3. Windows防病毒Defender 排除病毒误报

    开发的软件安装后,windows上提示病毒,默默被系统删除了. 一开始以为是自己软件的签名问题,后面发现,将被隔离的文件还原,文件的签名是存在的. 这是微软denfender的误报,为啥会报病毒呢? ...

  4. SSM之简单的CRUD

    文章目录 前言 项目介绍 项目代码介绍 数据库文件 源码介绍 代码展示 配置文件 业务逻辑代码 总结 前言 大家好呀,前面不是说最近在学习SSM么,可能学的不是那么深,不过刚刚开始,学完肯定需要先动手 ...

  5. python的format方法中文字符输出问题

    format方法的介绍 前言 提示:本文仅介绍format方法的使用和中文的输出向左右和居中输出问题 一.format方法的使用 format方法一般可以解决中文居中输出问题,假如我们设定宽度,当中文 ...

  6. 一文搞懂 x64 IA-64 AMD64 Inte64 IA-32e 架构之间的关系

    想要搞清楚 x64.IA64.AMD64 指令集之间的关系,就要先了解 Intel 和 AMD 这两家公司在生产处理器上的发展历史. x86 处理器 1978年 Intel 生产了它的第一款 16bi ...

  7. PBN衔接ILS时中间进近航段的保护区绘制方法

    收到网友提问,PBN程序和ILS程序在衔接时,中间进近航段的保护区该怎么去绘制. 这个问题怎么看呢?首先起始进近航段与中间进近航段存在两种连接方式,一种是直线进近.另一种是转弯进近,两者的保护区是显著 ...

  8. 2022-07-13:给你一个整数数组 arr ,你一开始在数组的第一个元素处(下标为 0)。 每一步,你可以从下标 i 跳到下标 i + 1 、i - 1 或者 j : i + 1 需满足:i +

    2022-07-13:给你一个整数数组 arr ,你一开始在数组的第一个元素处(下标为 0). 每一步,你可以从下标 i 跳到下标 i + 1 .i - 1 或者 j : i + 1 需满足:i + ...

  9. Netty实战(一)

    目录 第一章 Java网络编程 1.1 Java NIO 1.2 选择器 第二章 Netty是什么 2.1 Netty简介 2.2 Netty的特性 2.2.1 设计 2.2.2 易于使用 2.2.3 ...

  10. go语言中如何实现同步操作呢

    1. 简介 本文探讨了并发编程中的同步操作,讲述了为何需要同步以及两种常见的实现方式:sync.Cond和通道.通过比较它们的适用场景,读者可以更好地了解何时选择使用不同的同步方式.本文旨在帮助读者理 ...