#线段树合并、树上启发式合并#CF600E Lomsat gelral
题目
一棵树有\(n\)个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和
分析1
线段树合并,记录\(w,sum\)分别表示编号和以及颜色和,当颜色和相同时两个编号都要加,否则只加大的那一个,时间复杂度\(O(nlog_2n)\)
代码1
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=100011; long long ans[N];
struct xds{int ls,rs,sum; long long w;}h[N<<5];
struct node{int y,next;}e[N<<1];
int col[N],hs[N],root[N],cnt,k=1,n;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(long long ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void pup(int rt){
if (h[h[rt].ls].sum>h[h[rt].rs].sum)
h[rt].sum=h[h[rt].ls].sum,h[rt].w=h[h[rt].ls].w;
else h[rt].sum=h[h[rt].rs].sum,h[rt].w=h[h[rt].rs].w;
if (h[h[rt].ls].sum==h[h[rt].rs].sum) h[rt].w+=h[h[rt].ls].w;
}
inline void update(int &rt,int l,int r,int x){
if (!rt) rt=++cnt;;
if (l==r) {h[rt].w=l,++h[rt].sum; return;}
rr int mid=(l+r)>>1;
if (x<=mid) update(h[rt].ls,l,mid,x);
else update(h[rt].rs,mid+1,r,x);
pup(rt);
}
inline void merge(int nrt,int lrt,int l,int r){
if (l==r){
h[nrt].w=l,h[nrt].sum+=h[lrt].sum;
return;
}
rr int mid=(l+r)>>1;
if (h[lrt].ls){
if (!h[nrt].ls) h[nrt].ls=h[lrt].ls;
else merge(h[nrt].ls,h[lrt].ls,l,mid);
}
if (h[lrt].rs){
if (!h[nrt].rs) h[nrt].rs=h[lrt].rs;
else merge(h[nrt].rs,h[lrt].rs,mid+1,r);
}
pup(nrt);
}
inline void dfs(int x,int fa){
for (rr int i=hs[x];i;i=e[i].next)
if (e[i].y!=fa){
dfs(e[i].y,x);
merge(root[x],root[e[i].y],1,n);//合并子树
}
update(root[x],1,n,col[x]);//增加颜色
ans[x]=h[root[x]].w;
}
signed main(){
n=iut();
for (rr int i=1;i<=n;++i) col[i]=iut(),root[i]=++cnt;//每个点构一棵线段树
for (rr int i=1;i<n;++i){
rr int x=iut(),y=iut();
e[++k]=(node){y,hs[x]},hs[x]=k,
e[++k]=(node){x,hs[y]},hs[y]=k;
}
dfs(1,0);
for (rr int i=1;i<=n;++i)
print(ans[i]),putchar(i==n?10:32);
return 0;
}
分析2
树上启发式合并,自底向上处理,对于子树只处理重儿子的情况,对于轻儿子统计完就清除信息,合并到父节点时才重新算一遍,除了树上数颜色,这应该是也是一道模板题吧,因为重儿子所在的子树超过子树节点的一半,所以时间复杂度应该为\(O(nlog_2n)\),树链剖分就是用了这个性质再加上线段树、树状数组的数据结构只是再多了一个\(log_2n\)
代码2
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=100011; long long ans[N],now;
struct node{int y,next;}e[N<<1];
int col[N],hs[N],k=1,n,mx,cnt[N],root,dep[N],fat[N],son[N],big[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(long long ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void dfs1(int x,int fa){
dep[x]=dep[fa]+1,fat[x]=fa,son[x]=1;
for (rr int i=hs[x],mson=-1;i;i=e[i].next)
if (e[i].y!=fa){
dfs1(e[i].y,x);
son[x]+=son[e[i].y];
if (son[e[i].y]>mson) big[x]=e[i].y,mson=son[e[i].y];//处理重儿子
}
}
inline void update(int x,int z){//很好理解呀
cnt[col[x]]+=z;
if (cnt[col[x]]>mx) mx=cnt[col[x]],now=col[x];
else if (cnt[col[x]]==mx) now+=col[x];
for (rr int i=hs[x];i;i=e[i].next)
if (e[i].y!=fat[x]&&e[i].y!=root) update(e[i].y,z);
}
inline void dfs2(int x,int opt){
for (rr int i=hs[x];i;i=e[i].next)
if (e[i].y!=fat[x]&&e[i].y!=big[x]) dfs2(e[i].y,0);
if (big[x]) dfs2(big[x],1),root=big[x];
update(x,1),ans[x]=now,root=0;
if (!opt) update(x,-1),now=mx=0;
}
signed main(){
n=iut();
for (rr int i=1;i<=n;++i) col[i]=iut();
for (rr int i=1;i<n;++i){
rr int x=iut(),y=iut();
e[++k]=(node){y,hs[x]},hs[x]=k,
e[++k]=(node){x,hs[y]},hs[y]=k;
}
dfs1(1,0),dfs2(1,0);
for (rr int i=1;i<=n;++i)
print(ans[i]),putchar(i==n?10:32);
return 0;
}
#线段树合并、树上启发式合并#CF600E Lomsat gelral的更多相关文章
- P5979 [PA2014]Druzyny dp 分治 线段树 分类讨论 启发式合并
LINK:Druzyny 这题研究了一下午 终于搞懂了. \(n^2\)的dp很容易得到. 考虑优化.又有大于的限制又有小于的限制这个非常难处理. 不过可以得到在限制人数上界的情况下能转移到的最远端点 ...
- 【CodeChef EDGEST】Edges in Spanning Trees(树链剖分+树上启发式合并)
点此看题面 大致题意: 给你两棵\(n\)个点的树,对于第一棵树中的每条边\(e_1\),求存在多少条第二棵树中的边\(e_2\),使得第一棵树删掉\(e_1\)加上\(e_2\).第二棵树删掉\(e ...
- CF600E Lomsat gelral——线段树合并/dsu on tree
题目描述 一棵树有$n$个结点,每个结点都是一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号的和. 这个题意是真的窒息...具体意思是说,每个节点有一个颜色,你要找的是每个子树中颜色的众数 ...
- 【学习笔记/题解】树上启发式合并/CF600E Lomsat gelral
题目戳我 \(\text{Solution:}\) 树上启发式合并,是对普通暴力的一种优化. 考虑本题,最暴力的做法显然是暴力统计每一次的子树,为了避免其他子树影响,每次统计完子树都需要清空其信息. ...
- Codeforces 600E - Lomsat gelral(树上启发式合并)
600E - Lomsat gelral 题意 给出一颗以 1 为根的树,每个点有颜色,如果某个子树上某个颜色出现的次数最多,则认为它在这课子树有支配地位,一颗子树上,可能有多个有支配的地位的颜色,对 ...
- CF EDU - E. Lomsat gelral 树上启发式合并
学习:http://codeforces.com/blog/entry/44351 E. Lomsat gelral 题意: 给定一个以1为根节点的树,每个节点都有一个颜色,问每个节点的子树中,颜色最 ...
- [Codeforces600E] Lomsat gelral(树上启发式合并)
[Codeforces600E] Lomsat gelral(树上启发式合并) 题面 给出一棵N个点的树,求其所有子树内出现次数最多的颜色编号和.如果多种颜色出现次数相同,那么编号都要算进答案 N≤1 ...
- 【CF600E】Lomset gelral 题解(树上启发式合并)
题目链接 题目大意:给出一颗含有$n$个结点的树,每个节点有一个颜色.求树中每个子树最多的颜色的编号和. ------------------------- 树上启发式合并(dsu on tree). ...
- dsu on tree 树上启发式合并 学习笔记
近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...
- 树上启发式合并(dsu on tree)学习笔记
有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...
随机推荐
- SpringBoot事务注解@Transactional 事物回滚、手动回滚事物
处理springboot 下提交事务异常,数据库没有回滚的问题. spring的文档中说道,spring声明式事务管理默认对非检查型异常和运行时异常进行事务回滚,而对检查型异常则不进行回滚操作. 什么 ...
- ioutil.ReadDir读取目录下的内容
func dirents(dir string) []os.FileInfo{ entries, err := ioutil.ReadDir(dir) // 读取目录并返回排好序的文件以及子目录名 i ...
- linux系统优化命令--day03
用户管理与文件权限 给普通用户授权 root 用户 修改/etc/sudoers文件,文件非常重要, 不可以随意更改 vim /etc/sudoers 如果想要给用户赋予权限,我们要使用这个命令 vi ...
- 我的第一个项目(十五) :完成数据保存功能(后端,改update)
好家伙, 代码已开源(Gitee) PH-planewar: 个人开发的全栈小游戏 前端:vue2 + element-ui 后端: Springboot + mybatis-plus 数据库: ...
- 树莓派修改根文件系统为f2fs
目录 前言 操作简述 我的实际操作步骤 1. 准备 2. 查看树莓派分区信息 3. 备份根分区 4. 格式化树莓派TF卡根分区为f2fs文件系统 5.恢复备份 前言 在TF卡.固态硬盘之类的nand存 ...
- C语言之牛必克拉斯 main() 函数
C语言之main()函数 C程序最大的特点就是所有的程序都是用函数来装配的.main()称之为主函数,是所有程序运行的入口.其余函数分为有参或无参两种,均由main()函数或其它一般函数调用,若调用的 ...
- 在vue3中使用openlayers3实现track轨迹动画
网上太多资料代码,抄来抄去,而且版本也是v5.x版本的,部分API已经弃用 基础知识不多说,直接讲重点 三个关键变量 // 记录开始动画的时间 const startTime = ref(0); // ...
- 时间同步 ntp服务器
目录 一. 定义 二. 项目要求 三. 部署服务端 四. 部署客户端 一. 定义 #01 简介:ntp全名 network time protocol .NTP服务器可以为其他主机提供时间校对服务 # ...
- vim技巧--提取文本与文本替换
前几天遇到一个使用情景,需要从一个包含各个读取代码文件路径及名字的文件中把文件路径提取出来,做一个filelist,这里用到了文本的提取和替换,这里做个小总结记录一下. 从网上找了一个作者写的代码用来 ...
- nest.sh 脚本 发布服务
每次发布后端nest 直接执行一个脚本即可 给脚本赋值权限 chomd 777 nest.sh nest.sh 脚本 #!/bin/bash cd /root/gateway-study git pu ...