题目


分析

考虑每个格子\((i,j)\)获得的得分即为经过这个格子与不经过这个格子的答案

预处理出起点到每个点的最小得分和每个点到终点的最小得分,

那么经过这个格子的答案很好求,问题是不经过这个格子的答案,

也就是\((1,1)->(i-x,j)->(i-x,j+1)->(n,m)\)或者是

\((1,1)->(i,j-x)->(i+1,j-x)->(n,m)\),这都是很好求的


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N=2011; typedef long long lll;
int n,m,a[N][N]; lll ans,f1[N][N],f2[N][N],dp1[N][N],dp2[N][N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline lll min(lll a,lll b){return a<b?a:b;}
inline lll max(lll a,lll b){return a>b?a:b;}
signed main(){
n=iut(),m=iut(),ans=1e18;
for (rr int i=1;i<=n;++i)
for (rr int j=1;j<=m;++j)
a[i][j]=iut();
for (rr int i=1;i<=n;++i)
for (rr int j=1;j<=m;++j)
f1[i][j]=max(f1[i][j-1],f1[i-1][j])+a[i][j];
for (rr int i=n;i>=1;--i)
for (rr int j=m;j>=1;--j)
f2[i][j]=max(f2[i][j+1],f2[i+1][j])+a[i][j];
for (rr int i=1;i<=n;++i)
for (rr int j=1;j<=m;++j)
dp1[i][j]=max(dp1[i][j-1],f1[i][j]+f2[i+1][j]);
for (rr int j=1;j<=m;++j)
for (rr int i=1;i<=n;++i)
dp2[i][j]=max(dp2[i-1][j],f1[i][j]+f2[i][j+1]);
for (rr int i=1;i<=n;++i)
for (rr int j=1;j<=m;++j)
ans=min(ans,max(f1[i][j]+f2[i][j]-2*a[i][j],max(dp1[i][j-1],dp2[i-1][j])));
return !printf("%lld",ans);
}

#dp#洛谷 6855 「EZEC-4.5」走方格的更多相关文章

  1. 洛谷比赛 「EZEC」 Round 4

    洛谷比赛 「EZEC」 Round 4 T1 zrmpaul Loves Array 题目描述 小 Z 有一个下标从 \(1\) 开始并且长度为 \(n\) 的序列,初始时下标为 \(i\) 位置的数 ...

  2. 洛谷 P6222 - 「P6156 简单题」加强版(莫比乌斯反演)

    原版传送门 & 加强版传送门 题意: \(T\) 组数据,求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^n(i+j)^k\mu^2(\gcd(i,j))\g ...

  3. 洛谷P7814 「小窝 R3」心の記憶

    题意 第一行给定两个数字\(n\) \(m\) \((m \ge n)\)分别代表给定字符串长度以及需要构造出的字符串长度 第二行给定一个长度为\(n\)的字符串 (假设原来的字符串是\(a\) 需要 ...

  4. 洛谷 P4710 「物理」平抛运动

    洛谷 P4710 「物理」平抛运动 洛谷传送门 题目描述 小 F 回到班上,面对自己 28 / 110 的物理,感觉非常凉凉.他准备从最基础的力学学起. 如图,一个可以视为质点的小球在点 A(x_0, ...

  5. 题解-洛谷P6788 「EZEC-3」四月樱花

    题面 洛谷P6788 「EZEC-3」四月樱花 给定 \(n,p\),求: \[ans=\left(\prod_{x=1}^n\prod_{y|x}\frac{y^{d(y)}}{\prod_{z|y ...

  6. LOJ 2743(洛谷 4365) 「九省联考 2018」秘密袭击——整体DP+插值思想

    题目:https://loj.ac/problem/2473 https://www.luogu.org/problemnew/show/P4365 参考:https://blog.csdn.net/ ...

  7. 洛谷 P7718 -「EZEC-10」Equalization(差分转化+状压 dp)

    洛谷题面传送门 一道挺有意思的题,现场切掉还是挺有成就感的. 首先看到区间操作我们可以想到差分转换,将区间操作转化为差分序列上的一个或两个单点操作,具体来说我们设 \(b_i=a_{i+1}-a_i\ ...

  8. 树形DP 洛谷P2014 选课

    洛谷P2014 选课 题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门 ...

  9. 洛谷 P7879 -「SWTR-07」How to AK NOI?(后缀自动机+线段树维护矩乘)

    洛谷题面传送门 orz 一发出题人(话说我 AC 这道题的时候,出题人好像就坐在我的右侧呢/cy/cy) 考虑一个很 naive 的 DP,\(dp_i\) 表示 \([l,i]\) 之间的字符串是否 ...

  10. 洛谷 P7360 -「JZOI-1」红包(Min-Max 容斥+推式子)

    洛谷题面传送门 hot tea. 首先注意到这个 \(\text{lcm}\) 特别棘手,并且这里的 \(k\) 大得离谱,我们也没办法直接枚举每个质因子的贡献来计算答案.不过考虑到如果我们把这里的 ...

随机推荐

  1. 有了这份Java面试中的葵花宝典,让你面试起飞!!!

    HashMap面试题 HashMap与HashTable的区别 1.HashMap线程不安全 HashTable 线程是安全的采用synchronized 2.HashMap允许存放key 为null ...

  2. 在Study.BlazorOne项目中引入Study.Trade模块的实体的表结构

    # 1.修改EntityFrameworkCore项目下的BlazorOneDbContext文件,增加一行代码即可 增加Study.Trade.EntityFrameworkCore中的这个方法: ...

  3. Vue源码学习(十):关于dep和watcher使用的一些思考

    好家伙,   前面想了好久,都没想明白为什么要dep和watcher打配合才能实现数据-视图同步 为什么要多一个依赖管理这样的东西 给每个数据绑个watcher(xxfunction),然后,数据变了 ...

  4. 连接微信群、Slack 和 GitHub:社区开放沟通的基础设施搭建

    NebulaGraph 社区如何构建工具让 Slack.WeChat 中宝贵的群聊讨论同步到公共领域. 要开放,不要封闭 在开源社区中,开放的一个重要意义是社区内的沟通.讨论应该是透明.包容并且方便所 ...

  5. 十五: InnoDB的存储结构

    InnoDB的存储结构 1.数据库的存储结构:页 索引结构给我们提供了高效的索引方式,不过索引|信息以及数据记录都是保存在文件上的,确切说是存储在页结构中.另一方面,索引是在存储引擎中实现的,MySQ ...

  6. Java 关于变量的赋值

    1 /** 2 * 3 * @Description 4 * @author Bytezero·zhenglei! Email:420498246@qq.com 5 * @version 6 * @d ...

  7. 手机使用termux部署alist(一起体验alist挂载云盘)

    termux安装alist 安装termux 软件Termux:https://f-droid.org/packages/com.termux/ pkg install vim pkg install ...

  8. sort自定义排序字符串('1-1','2-1','3-2'此类)

    对数组排序 ['2-3','2-1','1-4','3-2','1-1','2-2','3-1'] 直接使用原生sort 对对象排序 [{a:'2-3'},{a:'2-1'},{a:'1-4'},{a ...

  9. 安卓开发基础适配器,SimpleAdapter 快速演示

    第一,主视图如下: <?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns: ...

  10. Linux 网络编程从入门到进阶 学习指南

    前言 大家好,我是小康.在上一篇文章中,我们探讨了 Linux 系统编程的诸多基础构件,包括文件操作.进程管理和线程同步等,接下来,我们将视野扩展到网络世界.在这个新篇章里,我们要让应用跳出单机限制, ...