More Divisors(反素数)
More Divisors
Time Limit: 2 Seconds Memory Limit: 65536 KB
Everybody knows that we use decimal notation, i.e. the base of our notation is 10. Historians say that it is so because men have ten fingers. Maybe they are right. However, this is often not very convenient, ten has only four divisors -- 1, 2, 5 and 10. Thus, fractions like 1/3, 1/4 or 1/6 have inconvenient decimal representation. In this sense the notation with base 12, 24, or even 60 would be much more convenient.
The main reason for it is that the number of divisors of these numbers is much greater -- 6, 8 and 12 respectively. A good quiestion is: what is the number not exceeding n that has the greatest possible number of divisors? This is the question you have to answer.
Input:
The input consists of several test cases, each test case contains a integer n (1 <= n <= 1016).
Output:
For each test case, output positive integer number that does not exceed n and has the greatest possible number of divisors in a line. If there are several such numbers, output the smallest one.
Sample Input:
10
20
100
Sample Output:
6
12
60
题解:找小于等于n的因子个数最大的最小整数; 代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
const double PI=acos(-1.0);
#define SI(x) scanf("%d",&x)
#define SL(x) scanf("%lld",&x)
#define PI(x) printf("%d",x)
#define PL(x) printf("%lld",x)
#define T_T while(T--)
#define P_ printf(" ")
typedef unsigned long long uLL;
const uLL INF=(uLL)~0;
int prim[16]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
uLL n,ans;
int nn;
void dfs(int pos,uLL v,int num){
if(num==nn)ans=min(ans,v);
if(num>nn&&v<=n)nn=num,ans=v;
for(int i=1;i<=63;i++){
if(v*prim[pos]>n)break;
dfs(pos+1,v*=prim[pos],num*(i+1));
}
}
int main(){
while(~scanf("%llu",&n)){
nn=0;ans=INF;
dfs(0,1,1);
printf("%llu\n",ans);
}
return 0;
}
More Divisors(反素数)的更多相关文章
- Codeforces Beta Round #27 (Codeforces format, Div. 2) E. Number With The Given Amount Of Divisors 反素数
E. Number With The Given Amount Of Divisors time limit per test 2 seconds memory limit per test 256 ...
- ZOJ-2562 More Divisors 反素数
题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个. 分析:反素数定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4 ...
- CodeForces - 27E--Number With The Given Amount Of Divisors(反素数)
CodeForces - 27E Number With The Given Amount Of Divisors Submit Status Description Given the number ...
- 【POJ2886】Who Gets the Most Candies?-线段树+反素数
Time Limit: 5000MS Memory Limit: 131072K Case Time Limit: 2000MS Description N children are sitting ...
- Prime & 反素数plus
题意: 求因数个数为n的最小正整数k. n<=10^9输出其唯一分解形式 SOL: 模拟题,一眼看过去有点惊讶...这不是我刚看过的反素数吗... 咦数据怎么这么大,恩搞个高精吧... 于是T了 ...
- BZOJ 1053 & 反素数
题意: 反素数,膜一篇GOD's Blog...http://blog.csdn.net/ACdreamers/article/details/25049767 此文一出,无与争锋... CODE: ...
- Who Gets the Most Candies?(线段树 + 反素数 )
Who Gets the Most Candies? Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%I64d &am ...
- BZOJ 3085: 反质数加强版SAPGAP (反素数搜索)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3085 题意:求n(<=10^100)之内最大的反素数. 思路: 优化2: i ...
- 【bzoj1053】反素数
[bzoj1053]反素数 题意 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例 ...
随机推荐
- Libcurl安装及编译
1.安装curl wget http://curl.haxx.se/download/curl-7.26.0.tar.gz tar -zxvf curl-7.26.0.tar.gz cd curl- ...
- vim之执行shell命令
vim中执行shell命令,有以下几种形式 (1) :!command 不退出vim, 并执行shell命令command, 将命令输出显示在vim的命令区域,不会改变当前编辑的文件的内容 (2) ...
- HTTP有关知识
Cookie 调用Cookie时,由于可校验Cookie的有效期,以及发送方的域,路径,协议等信息,所以正规发布的Cookie里面的内容不会因来自其他web站点和攻击者的攻击而泄露. Set-Cook ...
- c#打包文件解压缩
首先要引用一下类库:using Ionic.Zip;这个类库可以到网上下载. 下面对类库使用的封装方法: /// <summary> /// 得到指定的输入流的ZIP ...
- HDU 5226 Tom and matrix(组合数学+Lucas定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5226 题意:给一个矩阵a,a[i][j] = C(i,j)(i>=j) or 0(i < ...
- 自定义jquery表格插件
以前一直都是再用easyui插件来实现各种功能,但是easyui太过于庞大,使用越多对服务器负载影响越大. 基于此,在模仿easyui的dataGrid表格插件的同时,自己去封装了一个.实现了基本的j ...
- jquery+easy ui 实现表格列头筛选
示例代码 1.筛选的下拉 <a href="javascript:void(0)" id="filterStatus" class="easyu ...
- Windows Azure 成为业内首家被授权为 FedRAMP JAB P-ATO 的供应商
编辑人员注释:本文章由 Windows Azure 业务和运营部门产品市场营销总监 Sarah Fender 撰写 我们高兴地宣布,Windows Azure 被 FedRAMP 联合授权董事会 (J ...
- Poj 2371 Questions and answers(排序)
题目链接:http://poj.org/problem?id=2371 思路分析:使用计数排序或其他时间复杂度为O( log N )的排序. 代码如下: #include <iostream&g ...
- Python学习入门基础教程(learning Python)--2.2 Python下的变量基础
变量的基本概念,变量可以这样去理解,变量是一个值,这个值存储在计算机的内存里.以网购为例,您在选购傻商品的时候,是在不同页面里选不同的商品,选好一件点击“放入购物车”,选完了再点击去结帐,这些商品的价 ...