URAL 1029
题目大意:M层N列的矩阵(各元素均为正整数),找出一个路径从第一层到达第M层,使得路径上的所有数的和是所有可达路径中最小的,每次上到下一层以后就不能再上去,依次输出路径上的各点在所在层的列数。
Time Limit:1000MS Memory Limit:16384KB 64bit IO Format:%I64d & %I64u
数据规模:1<=M<=100,1<=N<=500,路径上的数的总和不会超过10^9。
理论基础:无。
题目分析:用dp[i][j]表示到达第i层第j列元素的最小路径的值,用pre[i][j]存储dp[i][j]状态的上一个结点相对于j的位置,用于最后输出答案,用a[i][j]存储数据。
初始化dp[i][j]为INF,对dp[1][j]赋值为a[j],理由很简单不用多说。
下来我们探寻dp方法。左dp一遍,右dp一遍即可。
左dp时,状态转移方程为:dp[i][j]=min(dp[i][j-1],dp[i-1][j])+a[i][j]。
右dp时,状态转移方程为:dp[i][j]=min(dp[i][j],dp[i][j+1]+a[i][j])(1<=j<n)
下来我们来证明,最后得出的必然是最优解。
左dp后得到的不一定全部都是最有解,但是dp[i][n]必然是最优解,因为第i层的上一个节点只能是dp[i-1][n],与dp[i][j-1]。分情况来讨论:
假设是dp[i-1][n]的话,那么左dp时,将它与大于dp[i][j-1]最有解时的值相比结果不会改变,所以得到的必然是最优解。
假设是dp[i][j-1]的话,那么我们可以得出,dp[i][j-1]必然是真实最优解(递归证明),因为dp[i][j-1]的上一个节点只能是dp[i][j-2]或者dp[i-1][j-1],dp[i][j-2]时同情况1,dp[i][j-2]时递归,最终得到dp[i][1]此时,因为dp[i][1]的上一个结点只能是dp[i-1][1],由情况1可得dp[i][1]必然是最优解,倒推回来,得出dp[i][j-1]是真实最优解,那么dp[i][j-1]+a[i][j]也必然是最优解,即dp[i][n]是最优解得证。
如此一来,我们在右dp时,将dp[i][j]与dp[i][j+1]+a[i][j]相比时得到的也必然是最优解。
证明过程如下:
假设,dp[i][j+1]+a[i][j]>=dp[i][j]那么说明dp[i][j]的最优解只能来自dp[i][j-1]与dp[i-1][j]由上面证明可以得出,dp[i][j]即为最优解。
假设,dp[i][j+1]+a[i][j]<dp[i][j],那么dp[i][j]=dp[i][j+1]+a[i][j]即为最优解,因为dp[i][j+1]是真实最优解。所以右dp后所有状态均获得最优解,得证。
呼呼,好累啊。。。不过应该是表述清楚啦、、、(*^__^*) 嘻嘻……
代码如下:
#include<iostream>
#include<cstring>
#include<string>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<ctime>
#include<vector>
using namespace std;
typedef double db;
#define DBG 0
#define maa (1<<31)
#define mii ((1<<31)-1)
#define ast(b) if(DBG && !(b)) { printf("%d!!|\n", __LINE__); while(1) getchar(); } //调试
#define dout DBG && cout << __LINE__ << ">>| "
#define pr(x) #x"=" << (x) << " | "
#define mk(x) DBG && cout << __LINE__ << "**| "#x << endl
#define pra(arr, a, b) if(DBG) {\
dout<<#arr"[] |" <<endl; \
for(int i=a,i_b=b;i<=i_b;i++) cout<<"["<<i<<"]="<<arr[i]<<" |"<<((i-(a)+1)%8?" ":"\n"); \
if((b-a+1)%8) puts("");\
}
template<class T> inline bool updateMin(T& a, T b) { return a>b? a=b, true: false; }
template<class T> inline bool updateMax(T& a, T b) { return a<b? a=b, true: false; }
typedef long long LL;
typedef long unsigned int LU;
typedef long long unsigned int LLU;
#define M 100
#define N 500
int dp[M+1][N+1],cost[M+1][N+1];
char pre[M+1][N+1];
short ans[M*N/2+M/2+1];
int m,n,cnt;
void init()
{
cnt=0;
memset(dp,64,sizeof dp);
memset(pre,0,sizeof pre);
for(int i=1;i<=n;i++)dp[1][i]=cost[1][i];
} void solve(int m,int n)
{
for(int i=2;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if(dp[i][j-1]>dp[i-1][j])
{
dp[i][j]=dp[i-1][j]+cost[i][j];
pre[i][j]='d';
}
else
{
dp[i][j]=dp[i][j-1]+cost[i][j];
pre[i][j]='l';
}
}
for(int j=n-1;j>=1;j--)
{
if(dp[i][j+1]+cost[i][j]<dp[i][j])
{
dp[i][j]=dp[i][j+1]+cost[i][j];
pre[i][j]='r';
}
}
}
int a=m,b=1;
for(int i=2;i<=n;i++)
{
if(dp[a][b]>dp[m][i])b=i;
}
ans[cnt++]=b;
while(a!=1)
{
if(pre[a][b]=='d')
{
ans[cnt++]=b;
a--;
}
else if(pre[a][b]=='l')
{
ans[cnt++]=b-1;
b--;
}
else if(pre[a][b]=='r')
{
ans[cnt++]=b+1;
b++;
}
}
while(cnt--)printf("%hd%c",ans[cnt],cnt==0?'\n':' ');
}
int main()
{
while(~scanf("%d%d",&m,&n))
{
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",*(cost+i)+j);
}
}
init();
solve(m,n);
}
return 0;
}
其中cost数组即为题目分析中的a数组了。
by:Jsun_moon http://blog.csdn.net/jsun_moon
URAL 1029的更多相关文章
- DP+路径 URAL 1029 Ministry
题目传送门 /* 题意:就是从上到下,找到最短路,输出路径 DP+路径:状态转移方程:dp[i][j] = min (dp[i-1][j], dp[i][j-1], dp[i][j+1]) + a[[ ...
- URAL 1029 Ministry
URAL 1029 思路: dp+记录路径 状态:dp[i][j]表示到(i,j)这个位置为止的最少花费 初始状态:dp[1][i]=a[1][i](1<=i<=m) 状态转移:dp[i] ...
- Ural 1029 Ministry 题解
目录 Ural 1029 Ministry 题解 题意 题解 程序 Ural 1029 Ministry 题解 题意 给定一个\(n\times m(1\le n \le10,1\le m \le50 ...
- URAL - 1029 dp
题意: n层楼,每层楼有m个房间.找出一个路径从第一层到达第M层,使得路径上的所有数的和是所有可达路径中最小的,每次上到下一层以后就不能再上去,依次输出路径上的各点在所在层的列数. 题解: 参考链接: ...
- URAL DP第一发
列表: URAL 1225 Flags URAL 1009 K-based Numbers URAL 1119 Metro URAL 1146 Maximum Sum URAL 1203 Scient ...
- ural 1075. Thread in a Space
1075. Thread in a Space Time limit: 1.0 secondMemory limit: 64 MB There are three points in a 3-dime ...
- BZOJ 1029 建筑抢修 贪心+堆
又搞了一晚上OI,编了两道BZOJ和几道NOI题库,临走之前写两篇感想 noip越来越近了,韩大和clove爷已经开始停课虐我们了... 1029: [JSOI2007]建筑抢修 Time Limit ...
- 后缀数组 POJ 3974 Palindrome && URAL 1297 Palindrome
题目链接 题意:求给定的字符串的最长回文子串 分析:做法是构造一个新的字符串是原字符串+反转后的原字符串(这样方便求两边回文的后缀的最长前缀),即newS = S + '$' + revS,枚举回文串 ...
- ural 2071. Juice Cocktails
2071. Juice Cocktails Time limit: 1.0 secondMemory limit: 64 MB Once n Denchiks come to the bar and ...
随机推荐
- es6新特性:
http://es6katas.org/ es6+一些新特性,截图如下 对应方法,函数显示相关的数据,如图: 对应方法,函数的例子,如下
- javascript 实现分享功能
1.面向过程分享 <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...
- 关于AppStore上传相关问题
1.电脑本地证书CertificateSigningRequest.certSigningRequest一定要一致(包括开发者证书,尤其是发布证书要一致,否则无法正常上传),此类错误Xcode一般会提 ...
- [原创作品]观察者模式在Web App的应用
(转载请注明:http://zhutty.cnblogs.com, 交流请加群:164858883) 在软件工程中,有一条重要的原则就是:高内聚低耦合.这是评定软件的设计好坏的一个标准.所谓高内聚,指 ...
- windows服务程序
首先创建一个myService的窗体程序作为服务安装卸载控制器(管理员身份运行vs,windows服务的安装卸载需要管理员权限) 在同一个解决方案里面添加一个windows服务程序,取名myWin ...
- Nyoj 43 24 Point game 【DFS】
24 Point game 时间限制:3000 ms | 内存限制:65535 KB 难度:5 描写叙述 There is a game which is called 24 Point game ...
- ASP.NET获取用户端的真实IP
ASP.NET获取用户端的真实IP在各种场景都能用到,但是用户网端变幻莫测情况众多,获取真实IP还真是不容易啊.下面分享个比较好一点的方法: 获取IP初始版本 /// <summary> ...
- 福昕阅读器drm加密解密总结
drm是数字版权保护的一种方式,前一段时间在做四川文轩数字图书馆项目的时候用到了相关的知识,感觉这东西对于一些在线阅读和视频播放还是有很大用处的. 对于其工作原理我也很好奇,先摘抄度娘的内容如下,当然 ...
- R语言编程艺术# 矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一 ...
- Sass的控制命令(循环)
@if@if指令是一个SassScript,它可以根据条件来处理样式块,如果条件为true返回一个样式块,反之false返回另一个样式块.在Sass中除了@if,还可以配合@else if和@else ...