BZOJ 2301 Problem B(莫比乌斯反演)
http://www.lydsy.com/JudgeOnline/problem.php?id=2301
题意:给a,b,c,d,k,求gcd(x,y)==k的个数(a<=x<=b,c<=y<=d)
思路:假设F(a,b)代表gcd(x,y)==k 的个数(1<=x<=a,1<=y<=b)
那么这是满足区间加减的
ans=F(b,d)-F(b,c)-F(a,d)+F(a,c)
剩下的就和Zap一样了
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
int mul[],p[],mark[],sum[];
int read(){
char ch=getchar();int t=,f=;
while (ch<''||ch>''){if (ch=='') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void init(){
mul[]=;
for (int i=;i<=;i++){
if (!mark[i]){
p[++p[]]=i;
mul[i]=-;
}
for (int j=;j<=p[]&&p[j]*i<=;j++){
mark[i*p[j]]=;
if (i%p[j]) mul[p[j]*i]=mul[i]*(-);
else{
mul[p[j]*i]=;
break;
}
}
}
sum[]=;
for (int i=;i<=;i++) sum[i]=sum[i-]+mul[i];
}
int cal(int a,int b){
if (a>b) std::swap(a,b);
int res=;
for (int i=,j;i<=a;i=j+){
j=std::min(a/(a/i),b/(b/i));
res+=(a/i)*(b/i)*(sum[j]-sum[i-]);
}
return res;
}
int main(){
int T=read();
init();
while (T--){
int a=read(),b=read(),c=read(),d=read(),k=read();
a--;c--;
printf("%d\n",std::max(,cal(b/k,d/k)+cal(a/k,c/k)-cal(b/k,c/k)-cal(a/k,d/k)));
}
}
BZOJ 2301 Problem B(莫比乌斯反演)的更多相关文章
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- BZOJ 2301 Problem b (莫比乌斯反演+容斥)
这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演
分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
随机推荐
- Nginx 内置变量,细化规则,真实IP获取及限制连接请求
希望下周测试之后能用起来!!!感觉很有用的. http://www.bzfshop.net/article/176.html http://www.cr173.com/html/19761_1.htm ...
- sign starfieldtech
signtool sign /f certfile.pfx /p password /tr http://tsa.starfieldtech.com /td SHA256 mycode.exe htt ...
- 使用URL创建网络连接、网络流的阻塞问题
在读取网络中流数据时,通常要创建一个网络连接.然而在创建URL连接时,我们通常会忽略掉设置ConnectTimeout,以及ReadTimeout: URL url = new URL(urlstr) ...
- POJ 1742 Coins(多重背包) DP
参考:http://www.hankcs.com/program/cpp/poj-1742-coins.html 题意:给你n种面值的硬币,面值为a1...an,数量分别为c1...cn,求问,在这些 ...
- windows10 离线包安装net3.5
找到离线镜像: 管理员命令行运行:dism.exe /online /enable-feature /featurename:netfx3 /Source:E:\sources\sxs 路径根据实际情 ...
- 神坑 关于&&的取值
a = 0&&"ssss": 结果a=0 a=true&&"w": 结果a=w: 类似于 前面是真的 会执行后面并返回后面 前面 ...
- linux下部署svn服务器
系统Linux debian 2.6.32-5-686 先安装svn工具:apt-get install subversion,耐心等待安装完成.安装完成后svn客户端.服务器都有了. 接者建立svn ...
- ecshop 管理员不需要旧密码
- 使用STS 创建spring配置文件
1.创建一个bean文件 2.输入文件名applicationContext.xml 3.这里会自动显示模板文件 4.创建后,自动填充头不定义 到这里就可以发现,我们创建spring文件时,需要的配置 ...
- KafkaOffsetMonitor监控
介绍 KafkaOffsetMonitor是有由Kafka开源社区提供的一款Web管理界面,这个应用程序用来实时监控Kafka服务的Consumer以及它们所在的Partition中的Offset,你 ...