最近因为工作需要,学习了NLP的相关知识,简单动手实现了一下计算Edit Distance的算法,就是计算一个字符串要变成另一个字符串需要的代价,这其中采用Levenshtein方式,即规定一个插入和一个删除的代价是1,一次替换的代价是2.

简单的逻辑:

对于长度为M的字符串X,长度为N的字符串Y,

Initialization:

  D(i,0)=i

  D(0,j)=j

Recurrence Relation:

  for each i=1...M

    for each j=1...N

      D(i,j)=Min(D(i-1,j)+1,D(i,j-1)+1,X(i)==Y(j)?D(i-1,j-1):D(i-1,j-1)+2)

Termination:

  D(M,N) is distance

public static int EditDistance(string str1, string str2)
{
int len1 = str1.Length;
int len2 = str2.Length; int[,] table = new int[len1+, len2+];
for (int i = ; i < len1; i++)
{
for (int j = ; j < len2; j++)
{
table[i, j] = ;
}
}
table[, ] = ; for (int i = ; i <= len1; i++)
{
for (int j = ; j <= len2; j++)
{
if (i == && j != )
{
table[i, j] = table[i, j - ] + ;
}
if (j == && i != )
{
table[i, j] = table[i - , j] + ;
}
if (i > && j > )
{
int temp = (str1[i-] == str2[j-]) ? table[i - , j - ] : table[i - , j - ] + ;
table[i, j] = Min(table[i, j - ] + , table[i - , j] + , temp);
}
}
}
return table[len1, len2];
}
public static int Min(int val1, int val2, int val3)
{
return (val1 < val2 ? val1 : val2) < val3 ? (val1 < val2 ? val1 : val2) : val3;
}

递归:

public static int EditDistanceD(string str1, string str2, int len1, int len2)
{
if (len1 == || len2 == )
{
return Max(len1, len2);
} return str1[len1-]==str2[len2-]?Min(EditDistanceD(str1.Substring(,len1-), str2.Substring(, len2-), len1-, len2-), EditDistanceD(str1.Substring(,len1-), str2, len1-, len2)+, EditDistanceD(str1, str2.Substring(, len2-), len1, len2-)+):Min(EditDistanceD(str1.Substring(,len1-), str2.Substring(, len2-), len1-, len2-)+, EditDistanceD(str1.Substring(,len1-), str2, len1-, len2)+, EditDistanceD(str1, str2.Substring(, len2-), len1, len2-)+);
}
public static int Max(int val1, int val2)
{
return val1 > val2 ? val1 : val2;
}

具体讲解参考:

http://blog.csdn.net/huaweidong2011/article/details/7727482

简单实现计算Edit Distance算法的更多相关文章

  1. 字符串相似度算法——Levenshtein Distance算法

    Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...

  2. 字符串相似度算法-LEVENSHTEIN DISTANCE算法

    Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...

  3. 利用编辑距离(Edit Distance)计算两个字符串的相似度

    利用编辑距离(Edit Distance)计算两个字符串的相似度 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可 ...

  4. stanford NLP学习笔记3:最小编辑距离(Minimum Edit Distance)

    I. 最小编辑距离的定义 最小编辑距离旨在定义两个字符串之间的相似度(word similarity).定义相似度可以用于拼写纠错,计算生物学上的序列比对,机器翻译,信息提取,语音识别等. 编辑距离就 ...

  5. Minimum edit distance(levenshtein distance)(最小编辑距离)初探

    最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离.是指两个字串之间,由一个转成还有一个所需的最少编辑操作次数.许可的编辑操作包含将一个字符替换成还有一个字符. ...

  6. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  7. Levenshtein Distance算法(编辑距离算法)

    编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...

  8. 编辑距离——Edit Distance

    编辑距离 在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤.不同的编辑距离中定义了不同操作的集合.比较常用的莱温斯坦距离(Le ...

  9. 动态规划 求解 Minimum Edit Distance

    http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit D ...

随机推荐

  1. HTML特殊符号编码大全

    HTML特殊字符编码:往网页中输入特殊字符,需在html代码中加入以&开头的字母组合或以&#开头的数字.下面就是以字母或数字表示的特殊符号大全. ´ ´ © © > > µ ...

  2. 4x4矩阵键盘扫描

    4x4矩阵键盘扫描 Windows 10 IoT Core 是微软针对物联网市场的一个重要产品,与以往的Windows版本不同,是为物联网设备专门设计的,硬件也不仅仅限于x86架构,同时可以在ARM架 ...

  3. oc block基本使用

    // // main.m // block基本使用 // // Created by Ymmmsick on 15/7/21. // Copyright (c) 2015年 Ymmmsick. All ...

  4. java如何在一个有序的数组类插入一个数!

    第一种:依次与有序数组中的每个数进行比较,然后找到位置之后,定义一个新的数组,该信数组的长度加一,再使用system.arraycopy将于数组copy到新数组!import java.util.Ar ...

  5. JS中如何使用Cookie

    1.关于JS设置Cookie的说明 在Javascript脚本里,一个cookie 实际就是一个字符串属性.当你读取cookie的值时,就得到一个字符串,里面当前WEB页使用的所有cookies的名称 ...

  6. Mono For Android中简单实现按钮的动画效果

    Android中动画的分Tween Animation和Frame Animation,本节主要讲Tween Animation的实现. 一般是通过XML文件来定义动画的,具体如下: 1.在项目res ...

  7. js调用打印机

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. 克鲁斯卡尔(Kruskal)算法

    # include <stdio.h> # define MAX_VERTEXES //最大顶点数 # define MAXEDGE //边集数组最大值 # define INFINITY ...

  9. BZOJ 3237([Ahoi2013]连通图-cdq图重构-连通性缩点)

    3237: [Ahoi2013]连通图 Time Limit: 20 Sec   Memory Limit: 512 MB Submit: 106   Solved: 31 [ Submit][ St ...

  10. vpn pptp配置

    安装 yum install pptpd 配置pptpd 改动/etc/pptpd.conf设置 localip 192.168.20.1 remoteip 192.168.20.234-238,19 ...