Codeforces 263E

原题

题目描述:一个\(n \times m\)的矩阵,每格有一个数,给出一个整数\(k\),定义函数\(f(x, y)\):

\[f(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i, j} \cdot max(0, k-|i-x|-|j-y|) (k \leq x \leq n-k+1, k \leq y \leq m-k+1)
\]

求使\(f(x, y)\)最大的一个二元对\((x, y)\)

solution

我表示只会暴力部分和

1、\(\sum_{p=1}^{i} a_{i-p+1, j}\)

2、\(\sum_{p=1}^{k} a_{i-p+1, j}*(k-p+1)\)

3、\(\sum_{p=1}^{k} a_{i-p+1, j+p-1}\)

4、以图为例,\(k=3, (3, 4)\)为红色圈住的部分每个数*1

5、以图为例, \(k=3, (3, 4)\) 为 $ ( ( 4 + 6 + 7 ) \times 1+ ( 2 + 6 ) \times 2+ 8 \times 3) $

然后旋转三次, 每次算的时候减去最高那列(图为减去第4列),加起来就是答案了。

AC的人中好像有更神的算法,就是把图斜着看,那就是求正方形的和了。

code

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <complex>
#include <set>
#include <map>
#include <stack>
using namespace std; const int maxn=1010;
typedef long long LL; int n, m, lim;
int a[maxn][maxn], tmpa[maxn][maxn];
LL f[maxn][maxn], tmpf[maxn][maxn];
LL sum[maxn][maxn][7]; void init()
{
scanf("%d%d%d", &n ,&m, &lim);
for (int i=1; i<=n; ++i)
for (int j=1; j<=m; ++j)
scanf("%d", &a[i][j]);
}
void prepare()
{
int fi=max(n, m);
for (int i=1; i<=fi; ++i)
for (int j=1; j<=fi; ++j)
for (int k=1; k<=5; ++k)
sum[i][j][k]=0;
for (int i=1; i<=n; ++i)
for (int j=1; j<=m; ++j)
{
//row and once
sum[i][j][1]=sum[i-1][j][1]+a[i][j];
//row and in order
LL up=(i-1>=lim? sum[i-1-lim][j][1]:0);
sum[i][j][2]=sum[i-1][j][2]-(sum[i-1][j][1]-up)+LL(lim)*a[i][j];
//bevel
sum[i][j][3]=sum[i-1][j+1][3]+a[i][j];
//triangle and once
up=(i>=lim? sum[i-lim][j][3]:0);
LL L;
if (j-1>=lim) L=sum[i][j-lim][3];
else
L=(i-(lim-(j-1))>0? sum[i-(lim-(j-1))][1][3]:0); sum[i][j][4]=sum[i][j-1][4]-(L-up)+sum[i][j][1]-(i>=lim? sum[i-lim][j][1]:0);
//triangle and in order
sum[i][j][5]=sum[i][j-1][5]-sum[i][j-1][4]+sum[i][j][2];
}
}
void turn()
{
for (int i=1; i<=n; ++i)
for (int j=1; j<=m; ++j)
tmpa[i][j]=a[i][j];
for (int i=1; i<=n; ++i)
for (int j=1; j<=m; ++j)
a[m-j+1][i]=tmpa[i][j]; for (int i=1; i<=n; ++i)
for (int j=1; j<=m; ++j)
tmpf[i][j]=f[i][j];
for (int i=1; i<=n; ++i)
for (int j=1; j<=m; ++j)
f[m-j+1][i]=tmpf[i][j];
swap(n, m);
}
void solve()
{
for (int i=1; i<=4; ++i)
{
prepare();
for (int j=1; j<=n; ++j)
for (int k=1; k<=m; ++k)
f[j][k]+=sum[j][k][5]-sum[j][k][2];
turn();
}
for (int i=1; i<=n; ++i)
for (int j=1; j<=m; ++j)
f[i][j]+=a[i][j]*lim; int x=0, y=0;
LL ans=-1;
for (int i=lim; i<=n-lim+1; ++i)
for (int j=lim; j<=m-lim+1; ++j)
if (f[i][j]>ans)
{
x=i; y=j;
ans=f[i][j];
}
printf("%d %d\n", x, y);
}
int main()
{
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
init();
solve();
return 0;
}

Codeforces 263E的更多相关文章

  1. CodeForces 263E Rhombus

    洛谷题目页面传送门 & CodeForces题目页面传送门 给定一个$n$行$m$列的矩阵,第$i$行$j$列为$a_{i,j}$,以及一个常数$s\in\left[1,\left\lceil ...

  2. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  3. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  4. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  5. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  6. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  7. CodeForces - 274B Zero Tree

    http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...

  8. CodeForces - 261B Maxim and Restaurant

    http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...

  9. CodeForces - 696B Puzzles

    http://codeforces.com/problemset/problem/696/B 题目大意: 这是一颗有n个点的树,你从根开始游走,每当你第一次到达一个点时,把这个点的权记为(你已经到过不 ...

随机推荐

  1. Nginx提示502和504错误的终极解决方案

    将脚本添加至计划任务: /usr/local/php/sbin/php-fpm reload   直接在crontab里写入php-fpm的平滑重启命令,"平滑重启"和" ...

  2. 获得easyUi dialog 对话框title的属性值

    <div id="dlg" class="easyui-dialog" title="Toolbar and Buttons" sty ...

  3. win7下设置 WiFi AP

    开启windows 7的隐藏功能:虚拟WiFi和SoftAP(即虚拟无线AP),就可以让计算机变成无线路由器.实现共享上网. 1.以管理员身份运行命令提示符: “开始”---在搜索栏输入“cmd”-- ...

  4. 500多条Linux信息

    http://www.cnblogs.com/zgqjymx/myposts.html?page=77 http://www.cnblogs.com/zgqjymx/tag/%E5%8E%9F%E5% ...

  5. centos6.4 ceph安装部署之ceph block device

    1,prelight/preface ceph storage clusterceph block deviceceph filesystemceph object storage 此篇记录ceph ...

  6. floodlight 学习(一)

    其实这个控制器应该没有多少人用了吧,一年多都没更新了,鉴于最近无论如何都要用这个,将学习笔记贴出来吧. 1.FloodlightProvider(Dev) 1.1简介:FloodlightProvid ...

  7. 【COM学习】之二、HRESULT,GUID

    HRESULT 来向用户报告各种情况.   他的值位于  WINERROR.H中 QueryInterface返回一个HRESULT值. HRESULT不是一个句柄,他是一个可分成三个域的32位值. ...

  8. 网易云课堂_程序设计入门-C语言_第六章:数组_1多项式加法

    1 多项式加法(5分) 题目内容: 一个多项式可以表达为x的各次幂与系数乘积的和,比如: 现在,你的程序要读入两个多项式,然后输出这两个多项式的和,也就是把对应的幂上的系数相加然后输出. 程序要处理的 ...

  9. OAuth2 for asp.net web api

    在上篇文章中我研究了OpenId及DotNetOpenAuth的相关应用,这一篇继续研究OAuth2. https://github.com/DotNetOpenAuth http://www.cnb ...

  10. HDOJ 2689

    Sort it Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...