FFT和功率谱估计

  1. 用Fourier变换求取信号的功率谱---周期图法

clf;
Fs=1000;
N=256;Nfft=256;%数据的长度和FFT所用的数据长度
n=0:N-1;t=n/Fs;%采用的时间序列
xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);
Pxx=10*log10(abs(fft(xn,Nfft).^2)/N);%Fourier振幅谱平方的平均值,并转化为dB
f=(0:length(Pxx)-1)*Fs/length(Pxx);%给出频率序列
subplot(2,1,1),plot(f,Pxx);%绘制功率谱曲线
xlabel('频率/Hz');ylabel('功率谱/dB');
title('周期图 N=256');grid on;
Fs=1000;
N=1024;Nfft=1024;%数据的长度和FFT所用的数据长度
n=0:N-1;t=n/Fs;%采用的时间序列
xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);
Pxx=10*log10(abs(fft(xn,Nfft).^2)/N);%Fourier振幅谱平方的平均值,并转化为dB
f=(0:length(Pxx)-1)*Fs/length(Pxx);%给出频率序列
subplot(2,1,2),plot(f,Pxx);%绘制功率谱曲线
xlabel('频率/Hz');ylabel('功率谱/dB');
title('周期图 N=256');grid on;

  1. 用Fourier变换求取信号的功率谱---分段周期图法
    %思想:把信号分为重叠或不重叠的小段,对每小段信号序列进行功率谱估计,然后取平均值作为整个序列的功率谱
    clf;
    Fs=1000;
    N=1024;Nsec=256;%数据的长度和FFT所用的数据长度
    n=0:N-1;t=n/Fs;%采用的时间序列
    randn('state',0);
    xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);
    Pxx1=abs(fft(xn(1:256),Nsec).^2)/Nsec; %第一段功率谱
    Pxx2=abs(fft(xn(257:512),Nsec).^2)/Nsec;%第二段功率谱
    Pxx3=abs(fft(xn(513:768),Nsec).^2)/Nsec;%第三段功率谱
    Pxx4=abs(fft(xn(769:1024),Nsec).^2)/Nsec;%第四段功率谱
    Pxx=10*log10(Pxx1+Pxx2+Pxx3+Pxx4/4);%Fourier振幅谱平方的平均值,并转化为dB
    f=(0:length(Pxx)-1)*Fs/length(Pxx);%给出频率序列
    subplot(2,1,1),plot(f(1:Nsec/2),Pxx(1:Nsec/2));%绘制功率谱曲线
    xlabel('频率/Hz');ylabel('功率谱/dB');
    title('平均周期图(无重叠) N=4*256');grid on;
    %运用信号重叠分段估计功率谱
    Pxx1=abs(fft(xn(1:256),Nsec).^2)/Nsec; %第一段功率谱
    Pxx2=abs(fft(xn(129:384),Nsec).^2)/Nsec;%第二段功率谱
    Pxx3=abs(fft(xn(257:512),Nsec).^2)/Nsec;%第三段功率谱
    Pxx4=abs(fft(xn(385:640),Nsec).^2)/Nsec;%第四段功率谱
    Pxx5=abs(fft(xn(513:768),Nsec).^2)/Nsec;%第四段功率谱
    Pxx6=abs(fft(xn(641:896),Nsec).^2)/Nsec;%第四段功率谱
    Pxx7=abs(fft(xn(769:1024),Nsec).^2)/Nsec;%第四段功率谱
    Pxx=10*log10(Pxx1+Pxx2+Pxx3+Pxx4+Pxx5+Pxx6+Pxx7/7);%Fourier振幅谱平方的平均值,并转化为dB
    f=(0:length(Pxx)-1)*Fs/length(Pxx);%给出频率序列
    subplot(2,1,2),plot(f(1:Nsec/2),Pxx(1:Nsec/2));%绘制功率谱曲线
    xlabel('频率/Hz');ylabel('功率谱/dB');
    title('平均周期图(重叠1/2)
    N=1024');grid on;
  2. 用Fourier变换求取信号的功率谱---welch方法
    %思想:welch法采用信号重叠分段,加窗函数和FFT算法等计算一个信号序列的自功率谱(PSD)和两个信号序列的互功率谱(CSD),采用MATLAB自
    %带的函数psd
    clf;
    Fs=1000;
    N=1024;Nfft=256;n=0:N-1;t=n/Fs;
    window=hanning(256);
    noverlap=128;
    dflag='none';
    randn('state',0);
    xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);
    Pxx=psd(xn,Nfft,Fs,window,noverlap,dflag);
    f=(0:Nfft/2)*Fs/Nfft;
    plot(f,10*log10(Pxx));
    xlabel('频率/Hz');ylabel('功率谱/dB');
    title('PSD--Welch方法');grid on;
  3. 功率谱估计----多窗口法(multitaper method ,MTM法)
    %思想:利用多个正交窗口获得各自独立的近似功率谱估计,综合这些得到一个序列的功率谱估计;相对于普通的周期图有更大的自由度;MTM法采用一个参数:时间带
    %宽积NW,这个参数用以定义计算功率谱所用窗的数目为2*NW-1,NW越大,时间域分辨率越高而频率分辨率越低,使得功率谱估计的波动减小;随着NW的增大
    %,每次估计中谱泄露增多,总功率谱估计的偏差增大
    clf;
    Fs=1000;
    N=1024;Nfft=256;n=0:N-1;t=n/Fs;
    randn('state',0);
    xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);
    [Pxx1,f]=pmtm(xn,4,Nfft,Fs); %此处有问题
    subplot(2,1,1),plot(f,10*log10(Pxx1));
    xlabel('频率/Hz');ylabel('功率谱/dB');
    title('多窗口法(MTM)NW=4');grid on;
    [Pxx,f]=pmtm(xn,2,Nfft,Fs);
    subplot(2,1,2),plot(f,10*log10(Pxx));
    xlabel('频率/Hz');ylabel('功率谱/dB');
    title('多窗口法(MTM)NW=2');grid on;
  4. 功率谱估计----最大熵法(maxmum entmpy method,MEM法)
    %思想:假定随机序列为平稳高斯过程利用已知的自相关序列rxx(0),rxx(1),rxx(2)...rxx(p)为基础,外推自相关序列rxx(p+1),rxx(p+2)...保证信息熵最大
    clf;
    Fs=1000;
    N=1024;Nfft=256;n=0:N-1;t=n/Fs;
    window=hanning(256);
    randn('state',0);
    xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);
    [Pxx1,f]=pmem(xn,14,Nfft,Fs); %此处有问题
    subplot(2,1,1),plot(f,10*log10(Pxx1));
    xlabel('频率/Hz');ylabel('功率谱/dB');
    title('最大熵法(MEM)Order=14');grid
    on;
    %采用Welch方法估计功率谱
    noverlap=128;
    dflag='none';
    subplot(2,1,2)
    psd(xn,Nfft,Fs,window,noverlap,dflag);
    xlabel('频率/Hz');ylabel('功率谱/dB');
    title('Welch方法估计功率谱');grid on;
  5. 功率谱估计----多信号分类法(multiple signal classification,music法)
    %注:适用于白白噪声中的多正弦波频率估计
    %思想:将数据自相关矩阵看成是由信号自相关矩阵和噪声自相关矩阵两部分组成,求他们的矩阵特征值向量
    clf;
    Fs=1000;
    N=1024;Nfft=256;n=0:N-1;t=n/Fs;
    randn('state',0);
    xn=sin(2*pi*100*t)+2*sin(2*pi*200*t)+randn(1,N);
    pmusic(xn,[7,1.1],Nfft,Fs,32,16);
    xlabel('频率/KHz');ylabel('功率谱/dB');
    title('Welch方法估计功率谱');grid on;

MatLab实现FFT与功率谱的更多相关文章

  1. MATLAB中FFT的使用方法

    MATLAB中FFT的使用方法 说明:以下资源来源于<数字信号处理的MATLAB实现>万永革主编 一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X, ...

  2. [转载]Matlab中fft与fftshift命令的小结与分析

    http://blog.sina.com.cn/s/blog_68f3a4510100qvp1.html 注:转载请注明出处——by author. 我们知道Fourier分析是信号处理里很重要的技术 ...

  3. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  4. MATLAB中fft函数的正确使用方法

    问题来源:在阅读莱昂斯的<数字信号处理>第三章离散傅里叶变换时,试图验证实数偶对称信号的傅里叶变换实部为偶对称的且虚部为零.验证失败.验证信号为矩形信号,结果显示虚部是不为零且最大幅值等于 ...

  5. [转载]MATLAB中FFT的使用方法

    http://blog.163.com/fei_lai_feng/blog/static/9289962200971751114547/ 说明:以下资源来源于<数字信号处理的MATLAB实现&g ...

  6. matlab 中fft的用法

    一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性. 例:N=8;n=0:N- ...

  7. Matlab 之 FFT的理解和应用

    网上看了一些大牛的关于FFT的见解,加上自己的一点儿理解,针对以下这几个问题来加深对FFT的理解. 不知道大家有没有类似以下几点的困惑: 问题的提出 对于1秒钟输出的连续信号,使用采样率Fs不同,就会 ...

  8. MATLAB使用fft求取给定音频信号的频率

    一段10s立体声音频,采样率位8000Hz,已知频率为1000Hz clc; clear; [data, Fs] = audioread('1khz_stereo_8000.wav'); fs=Fs; ...

  9. Matlab计算的FFT与通过Origin计算的FFT

    实验的过程中,经常需要对所采集的数据进行频谱分析,软件的选择对计算速度影响挺大的.我在实验过程中,通常使用Origin7.5来进行快速傅里叶变换,因为方便快捷,计算之后,绘出来的图也容易编辑.但是当数 ...

随机推荐

  1. UGUI 锚点

    今天我们来学习下UGUI的锚点, 他是做什么的呢?  基本上就是用于界面布局. 1. 1个控件对应1个描点. 2. 描点分成四个小叶片,  每1个叶片 对应 控件四边框的角点 3. 不管屏幕如何放大缩 ...

  2. Can you solve this equation?(二分)

    Can you solve this equation? Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Ja ...

  3. Ubuntu下嵌入式Qt开发环境配置全攻略

    http://qpcwth.blog.163.com/blog/static/20993024620139151424822/ 在安装的过称中,出现一些问题,注意试想: 1.本次开发环境的配置,是基于 ...

  4. jQuery UI的基本使用方法与技巧

    一.概述 jQuery UI is a widget and interaction library built on top of the jQuery JavaScript Library, th ...

  5. C#整理8——结构体

    结构体:相当于是我们自己定义的一种复杂的类型.int... double float bool char string DateTime 数组类型生活中大部份的对象都是复合型的对象. 如何定义结构体类 ...

  6. SQL Server 性能小点

    1. 对索引列使用Like语句, 如果是"Like 'aa%'"则使用索引优化, 若是"Like '%aa'"则不使用索引优化. 2. "[Age] ...

  7. Winform单例模式与传值

    单例模式(singleton)的意思就是只有一个实例.单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例.这个类称为单例类. 在多窗体界面中,如果要加入一个“关于”的窗体,用于显 ...

  8. JSON 日期格式带 T 问题

    var iso = new IsoDateTimeConverter(); iso.DateTimeFormat = "yyyy-MM-dd"; object obj = new  ...

  9. 解决linux top命令提示的unknown terminal type的问题

    [root@localhost bin]# top 'xterm-256color': unknown terminal type. 在网上搜索了解决方法如下: 解决办法: 1.临时办法,下次启动失效 ...

  10. error LNK2019: 无法解析的外部符号 "public:

    错误 1 error LNK2019: 无法解析的外部符号 "public: __thiscall test::test(void)" (??0test@@QAE@XZ),该符号在 ...