E. Anniversary

time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

There are less than 60 years left till the 900-th birthday anniversary of a famous Italian mathematician Leonardo Fibonacci. Of course, such important anniversary needs much preparations.

Dima is sure that it’ll be great to learn to solve the following problem by the Big Day: You’re given a set A, consisting of numbers l, l + 1, l + 2, …, r; let’s consider all its k-element subsets; for each such subset let’s find the largest common divisor of Fibonacci numbers with indexes, determined by the subset elements. Among all found common divisors, Dima is interested in the largest one.

Dima asked to remind you that Fibonacci numbers are elements of a numeric sequence, where F1 = 1, F2 = 1, Fn = Fn - 1 + Fn - 2 for n ≥ 3.

Dima has more than half a century ahead to solve the given task, but you only have two hours. Count the residue from dividing the sought largest common divisor by m.

Input

The first line contains four space-separated integers m, l, r and k (1 ≤ m ≤ 109; 1 ≤ l < r ≤ 1012; 2 ≤ k ≤ r - l + 1).

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.

Output

Print a single integer — the residue from dividing the sought greatest common divisor by m.

Examples

inputCopy

10 1 8 2

outputCopy

3

inputCopy

10 1 8 3

outputCopy

1

题意很简单,就是给你第L到第R个斐波那契额数列,让你选K个求K个数的最大公约数模MOD;

在这里首先要明确性质,斐波那契数列第K个数与第S个数的最大公约数是,第N个斐波那契数,N为S与K的最大公约数。

所以这个题转化为先求N选K的最大公约数+矩阵快速幂求斐波那契,N选K的数的最大公约数,因为K是连续的,所有有这个性质,每N个数一定有一个N的倍数,这是后应该判断K与区间长度的关系,再判断L与R,与N的关系,选取最大值即为K组的最大公约数。

带入最大公约数到矩阵快速幂即可。

矩阵快速幂 https://blog.csdn.net/weixin_43627118/article/details/97394804

#include<bits/stdc++.h>
using namespace std;
int MOD=1e8+5;
const int maxn=2; //定义方阵的阶数
struct JZ{ long long m[maxn][maxn]; };//定义maxn阶方阵
JZ muti(JZ a,JZ b,int mod);
JZ quick_mod(JZ a,long long k,int mod);
bool chk(long long u, long long L, long long R, long long K) {
if(u == 0) {
return 0;
}
return (R / u) - ((L - 1) / u) >= K;
}
int main()
{
long long L,R,K;
cin >> MOD >> L >> R >> K;
long long te = 0;
for(long long i = 1; i * i <= R; i++) {
if(chk(i, L, R, K)) {
te = max(te, i);
}
}
for(long long bs = 1; bs * bs <= R; bs++) {
if(chk(R / bs, L, R, K)) {
te = max(te, R / bs);
}
}
for(long long bs = 1; bs * bs <= L - 1; bs++) {
if((chk(((L - 1) / bs) - 1, L, R, K))) {
te = max(te, ((L - 1) / bs) - 1);
}
}
JZ demo,ans;
demo.m[0][0]=0; demo.m[0][1]=1; demo.m[1][0]=1; demo.m[1][1]=1;
ans=quick_mod(demo,te,MOD);
cout<<ans.m[1][0]<<endl;
}
JZ muti(JZ a,JZ b,int mod)
{
JZ temp;
memset(temp.m,0,sizeof(temp.m));
for(int i=0;i<maxn;i++)
for(int j=0;j<maxn;j++){
for(int k=0;k<maxn;k++)
{
temp.m[i][j]+=(long long) a.m[i][k]*b.m[k][j]%mod;
}
temp.m[i][j]%=mod;
}
return temp;
}
JZ quick_mod(JZ a,long long k,int mod)
{
JZ ans;
for(int i=0;i<maxn;i++)
for(int j=0;j<maxn;j++)
ans.m[i][j]=(i==j);
while(k) {
if(k &1) ans =muti(ans,a,mod);
a = muti(a,a,mod);
k >>=1;
}
return ans;
}

codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质的更多相关文章

  1. POJ 3070(求斐波那契数 矩阵快速幂)

    题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...

  2. CodeForces 227E Anniversary (斐波那契的高妙性质+矩阵快速幂)

    There are less than 60 years left till the 900-th birthday anniversary of a famous Italian mathemati ...

  3. UVA - 10689 Yet another Number Sequence (矩阵快速幂求斐波那契)

    题意:已知f(0) = a,f(1) = b,f(n) = f(n − 1) + f(n − 2), n > 1,求f(n)的后m位数. 分析:n最大为109,矩阵快速幂求解,复杂度log2(1 ...

  4. poj3070矩阵快速幂求斐波那契数列

      Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13172   Accepted: 9368 Desc ...

  5. HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  6. poj3070 求斐波那契数列第n项 ——矩阵快速幂

    题目:http://poj.org/problem?id=3070 用矩阵快速幂加速递推. 代码如下: #include<iostream> #include<cstdio> ...

  7. Codeforces 719E [斐波那契区间操作][矩阵快速幂][线段树区间更新]

    /* 题意:给定一个长度为n的序列a. 两种操作: 1.给定区间l r 加上某个数x. 2.查询区间l r sigma(fib(ai)) fib代表斐波那契数列. 思路: 1.矩阵操作,由矩阵快速幂求 ...

  8. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  9. 斐波那契数列第N项f(N)[矩阵快速幂]

    矩阵快速幂 定义矩阵A(m*n),B(p*q),A*B有意义当且仅当n=p.即A的列数等于B的行数. 且C=A*B,C(m*q). 例如: 进入正题,由于现在全国卷高考不考矩阵,也没多大了解.因为遇到 ...

随机推荐

  1. Linux网络基础,路由的追踪

    一.traceroute traceroute [-46ndFT] [-f<存活数值>] [-g<网关>] [-i(--interface)<device>] [- ...

  2. 路由与交换,cisco路由器配置,静态路由

    网络是一个大型的拓扑结构,在路由表中,最重要的是管理距离和度量值 管理距离 管理距离用来确定路由的优先级.管理距离的范围是0-255之间的整数值.值越低代表优先级越高.0代表最高优先级.并且只有直连路 ...

  3. 【转自hongcha_717】数组指针和指针数组的区别

    数组指针(也称行指针)定义 int (*p)[n];()优先级高,首先说明p是一个指针,指向一个整型的一维数组,这个一维数组的长度是n,也可以说是p的步长.也就是说执行p+1时,p要跨过n个整型数据的 ...

  4. Pytest系列(20)- allure结合pytest,allure.step()、allure.attach的详细使用

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 前言 allure除了支持pyte ...

  5. 数据结构和算法(Golang实现)(20)排序算法-选择排序

    选择排序 选择排序,一般我们指的是简单选择排序,也可以叫直接选择排序,它不像冒泡排序一样相邻地交换元素,而是通过选择最小的元素,每轮迭代只需交换一次.虽然交换次数比冒泡少很多,但效率和冒泡排序一样的糟 ...

  6. Simple Chat Application for Python

    一.知识点介绍: asyncore .asynchat模块使用 由于 Python 是一门带 GIL 的语言,所以在 Python 中使用多线程处理IO操作过多的任务并不是很好的选择.同时聊天服务器将 ...

  7. c++ string类的一些使用

    初始化: string类的初始化是不可以用字符进行的,如; string str='c'; string str('c');必须传递字符串字面量作为参数:string本身是用模板类进行实例化的类. s ...

  8. 美的PDF转换成Word转换器完全免费

    下载地址:百度网盘提取码:02ap 安装破解步骤:先安装主程序,末尾是full结尾的,安装完成后不要打开软件,然后接着安装破解补丁,即可破解成功! 需要的老铁们直接拿去用吧,亲测好用!有配套的功能强大 ...

  9. pytorch 中LSTM模型获取最后一层的输出结果,单向或双向

    单向LSTM import torch.nn as nn import torch seq_len = 20 batch_size = 64 embedding_dim = 100 num_embed ...

  10. 利用 tee 命令调试shell脚本中的管道

    在编写shell脚本时,调试是个比较麻烦的事,特别是涉及到多层管道命令的时候,会产生多个中间结果,tee命令的作用是从标准输入中读取数据写入标准输出或文件中,利用它可以从管道中读取中间结果并写入本地临 ...