codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质
E. Anniversary
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
There are less than 60 years left till the 900-th birthday anniversary of a famous Italian mathematician Leonardo Fibonacci. Of course, such important anniversary needs much preparations.
Dima is sure that it’ll be great to learn to solve the following problem by the Big Day: You’re given a set A, consisting of numbers l, l + 1, l + 2, …, r; let’s consider all its k-element subsets; for each such subset let’s find the largest common divisor of Fibonacci numbers with indexes, determined by the subset elements. Among all found common divisors, Dima is interested in the largest one.
Dima asked to remind you that Fibonacci numbers are elements of a numeric sequence, where F1 = 1, F2 = 1, Fn = Fn - 1 + Fn - 2 for n ≥ 3.
Dima has more than half a century ahead to solve the given task, but you only have two hours. Count the residue from dividing the sought largest common divisor by m.
Input
The first line contains four space-separated integers m, l, r and k (1 ≤ m ≤ 109; 1 ≤ l < r ≤ 1012; 2 ≤ k ≤ r - l + 1).
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
Output
Print a single integer — the residue from dividing the sought greatest common divisor by m.
Examples
inputCopy
10 1 8 2
outputCopy
3
inputCopy
10 1 8 3
outputCopy
1
题意很简单,就是给你第L到第R个斐波那契额数列,让你选K个求K个数的最大公约数模MOD;
在这里首先要明确性质,斐波那契数列第K个数与第S个数的最大公约数是,第N个斐波那契数,N为S与K的最大公约数。
所以这个题转化为先求N选K的最大公约数+矩阵快速幂求斐波那契,N选K的数的最大公约数,因为K是连续的,所有有这个性质,每N个数一定有一个N的倍数,这是后应该判断K与区间长度的关系,再判断L与R,与N的关系,选取最大值即为K组的最大公约数。
带入最大公约数到矩阵快速幂即可。
矩阵快速幂 https://blog.csdn.net/weixin_43627118/article/details/97394804
#include<bits/stdc++.h>
using namespace std;
int MOD=1e8+5;
const int maxn=2; //定义方阵的阶数
struct JZ{ long long m[maxn][maxn]; };//定义maxn阶方阵
JZ muti(JZ a,JZ b,int mod);
JZ quick_mod(JZ a,long long k,int mod);
bool chk(long long u, long long L, long long R, long long K) {
if(u == 0) {
return 0;
}
return (R / u) - ((L - 1) / u) >= K;
}
int main()
{
long long L,R,K;
cin >> MOD >> L >> R >> K;
long long te = 0;
for(long long i = 1; i * i <= R; i++) {
if(chk(i, L, R, K)) {
te = max(te, i);
}
}
for(long long bs = 1; bs * bs <= R; bs++) {
if(chk(R / bs, L, R, K)) {
te = max(te, R / bs);
}
}
for(long long bs = 1; bs * bs <= L - 1; bs++) {
if((chk(((L - 1) / bs) - 1, L, R, K))) {
te = max(te, ((L - 1) / bs) - 1);
}
}
JZ demo,ans;
demo.m[0][0]=0; demo.m[0][1]=1; demo.m[1][0]=1; demo.m[1][1]=1;
ans=quick_mod(demo,te,MOD);
cout<<ans.m[1][0]<<endl;
}
JZ muti(JZ a,JZ b,int mod)
{
JZ temp;
memset(temp.m,0,sizeof(temp.m));
for(int i=0;i<maxn;i++)
for(int j=0;j<maxn;j++){
for(int k=0;k<maxn;k++)
{
temp.m[i][j]+=(long long) a.m[i][k]*b.m[k][j]%mod;
}
temp.m[i][j]%=mod;
}
return temp;
}
JZ quick_mod(JZ a,long long k,int mod)
{
JZ ans;
for(int i=0;i<maxn;i++)
for(int j=0;j<maxn;j++)
ans.m[i][j]=(i==j);
while(k) {
if(k &1) ans =muti(ans,a,mod);
a = muti(a,a,mod);
k >>=1;
}
return ans;
}
codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质的更多相关文章
- POJ 3070(求斐波那契数 矩阵快速幂)
题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...
- CodeForces 227E Anniversary (斐波那契的高妙性质+矩阵快速幂)
There are less than 60 years left till the 900-th birthday anniversary of a famous Italian mathemati ...
- UVA - 10689 Yet another Number Sequence (矩阵快速幂求斐波那契)
题意:已知f(0) = a,f(1) = b,f(n) = f(n − 1) + f(n − 2), n > 1,求f(n)的后m位数. 分析:n最大为109,矩阵快速幂求解,复杂度log2(1 ...
- poj3070矩阵快速幂求斐波那契数列
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13172 Accepted: 9368 Desc ...
- HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】
Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- poj3070 求斐波那契数列第n项 ——矩阵快速幂
题目:http://poj.org/problem?id=3070 用矩阵快速幂加速递推. 代码如下: #include<iostream> #include<cstdio> ...
- Codeforces 719E [斐波那契区间操作][矩阵快速幂][线段树区间更新]
/* 题意:给定一个长度为n的序列a. 两种操作: 1.给定区间l r 加上某个数x. 2.查询区间l r sigma(fib(ai)) fib代表斐波那契数列. 思路: 1.矩阵操作,由矩阵快速幂求 ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 斐波那契数列第N项f(N)[矩阵快速幂]
矩阵快速幂 定义矩阵A(m*n),B(p*q),A*B有意义当且仅当n=p.即A的列数等于B的行数. 且C=A*B,C(m*q). 例如: 进入正题,由于现在全国卷高考不考矩阵,也没多大了解.因为遇到 ...
随机推荐
- python调用js
安装 pip install PyExecJS 方法 eval() 输入参数:source(JS语句).cwd(路径) 返回值:result(语句执行结果) compile() 输入参数:source ...
- 数据结构和算法(Golang实现)(3)简单入门Golang-流程控制语句
流程控制语句 计算机编程语言中,流程控制语句很重要,可以让机器知道什么时候做什么事,做几次.主要有条件和循环语句. Golang只有一种循环:for,只有一种判断:if,还有一种特殊的switch条件 ...
- Python——flask漏洞探究
python的用途是真的多,就连网站也能做,这个有点像Java的Servlet flask基础 hello world 我们先从基础的开始,在网页上打出hello world,python代码如下: ...
- 第一章:shell脚本初入门
1.shell脚本中的source或者.空格再加上文件,表示加载文件中的命令及语句(困惑多时终于解开^-^) 2.脚本开头书写好作者版本等信息,方便维护:流程语句提前把格式写好,防止遗漏 3.定义字符 ...
- harbor仓库搭建
harbor安装要求 harbor快速部署 下载harbor:https://github.com/goharbor/harbor/releases 这边以harbor-1.8.2为例 [root@g ...
- Python 小技之实现的鲜花盛宴,你准备好了吗?
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:派森酱 PS:如有需要Python学习资料的小伙伴可以加点击下方链接 ...
- 阿里面试官让我实现一个线程安全并且可以设置过期时间的LRU缓存,我蒙了!
目录 1. LRU 缓存介绍 2. ConcurrentLinkedQueue简单介绍 3. ReadWriteLock简单介绍 4.ScheduledExecutorService 简单介绍 5. ...
- 永恒之蓝MS17010复现
MS17010复现 靶机win7:192.168.41.150 攻击kali: 192.168.41.147 扫描 通过auxiliary/scanner/smb/smb_ms17_010模块扫描 ...
- [YII2] 去除自带js,加载自己的JS,然后ajax(json)传值接值!
本想用YII2自带的JS,可是用着效果不好,想从新加载,找了好多终于实现啦!还有ajax(json)传值接值! 首先直接了当的就把YII2自带的js去掉! 把下面代码加入到/config/main.p ...
- Vue 3.0 Composition API - 中文翻译
Composition API 发布转载请附原文链接 https://www.cnblogs.com/zgh-blog/articles/composition_api.html 这两天初步了解了下 ...