P3842 [TJOI2007]线段
最近多刷些dp,觉得这个算不上蓝题
在一个\(n\times n\)的平面上,在每一行中有一条线段,第\(i\)行的线段的左端点是\((i, L_i)\),右端点是\((i, R_i)\),其中\(1\leq L_i \leq R_i \leq n\)。
你从\((1, 1)\)点出发,要求沿途走过所有的线段,最终到达\((n, n)\)点,且所走的路程长度要尽量短。
更具体一些说,你在任何时候只能选择向下走一步(行数增加 1)、向左走一步(列数减少 1)或是向右走一步(列数增加 1)。当然,由于你不能向上行走,因此在从任何一行向下走到另一行的时候,你必须保证已经走完本行的那条线段。
设计状态,每行走完都会停留在左端点或是右端点,因为不能走不完在中间就停下
所以考虑将状态设计为\(f_{i,0/1}\),表示走完了第\(i\)行,并停留在左端点/右端点
预处理出第一行的值
以每一行的\(f_{i,0}\)(走完停留在左端点)为例,因为要停留在左端点,肯定要从右端点开始走
如果上一行是停留在右端点,则走到右端点的代价为\(\text{abs}(R_{i-1}-R_i)+1+f_{i-1,1}\)
同样,上一行停留在左端点,走到这一行右端点的代价为\(\text{abs}(L_{i-1}-R_i)+1+f_{i-1,0}\)
让后当然还要再加上这一行线段的长度
每行的\(f_{i,1}\)也是同理
答案显然是\(\min(f_{n,0}+(n-L_n),f_{n,1}+(n-R_n))\),别忘了最后还要走到\((n,n)\)
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
LL f[20006][2];
LL l[20006],r[20006];
int main(){
n=read();
for(reg int i=1;i<=n;i++) l[i]=read(),r[i]=read();
f[1][0]=r[1]-1+(r[1]-l[1]);f[1][1]=r[1]-1;
for(reg int i=2;i<=n;i++){
f[i][0]=std::min(f[i-1][0]+std::abs(l[i-1]-r[i])+(r[i]-l[i]),
f[i-1][1]+std::abs(r[i-1]-r[i])+(r[i]-l[i]))+1;
f[i][1]=std::min(f[i-1][0]+std::abs(l[i-1]-l[i])+(r[i]-l[i]),
f[i-1][1]+std::abs(r[i-1]-l[i])+(r[i]-l[i]))+1;
}
std::printf("%lld",std::min(f[n][0]+n-l[n],f[n][1]+n-r[n]));
return 0;
}
P3842 [TJOI2007]线段的更多相关文章
- luogu [TJOI2007]线段
题目链接 luogu [TJOI2007]线段 题解 dp[i][0/1]第i行在左/右端点的最短路 瞎转移 代码 #include<bits/stdc++.h> using namesp ...
- 【洛谷 P3842】[TJOI2007]线段(DP)
裸DP.感觉楼下的好复杂,我来补充一个易懂的题解. f[i][0]表示走完第i行且停在第i行的左端点最少用的步数 f[i][1]同理,停在右端点的最少步数. 那么转移就很简单了,走完当前行且停到左端点 ...
- [TJOI2007] 线段
因为每行必须走完才能到下一行,所以我们有两种决策: 1.最后留在线段左端点 2.最后留在线段右端点 这种存在状态转移且多决策的问题用动态规划来进行递推是最好不过的了. 所以我们设\(dp[i][0/1 ...
- [TJOI2007] 线段 (动态规划)
题目链接 Solution 传统的线性 \(dp\) . \(f[i][0]\),\(f[i][1]\) 分别表示最后一次在 \(i\) ,然后在 左边或者右边的最小步数. 然后就每次根据上一次左边和 ...
- DP擎天
DP! 黄题: 洛谷P2101 命运石之门的选择 假装是DP(分治 + ST表) CF 982C Cut 'em all! 树形贪心 洛谷P1020 导弹拦截 单调队列水题 绿题: 洛谷P1594 护 ...
- NOIpDairy
Day 0 水水比赛 Day 1 写写Dp Part1:Dp基础练习 [HNOI2002]公交车路线 秒切,点数这么少,N这么大,目测O(N)+暴力更新 5min写完 P3842 [TJOI2007] ...
- NOIP前刷题记录
因为本蒻实在太蒻了...对于即将到来的NOIP2018ssfd,所以下决心要把自己近期做过的题目(衡量标准为洛谷蓝题难度或以上)整理一下,归归类,简单地写一下思路,就当作自己复习了吧qwq 本随笔持续 ...
- NOIP刷题
搜索 [NOIP2013]华容道 最短路+带剪枝的搜索,是一个思维难度比较大的题目. CF1064D Labyrinth 考虑贪心,用双向队列bfs [NOIP2017]宝藏 剪枝搜索出奇迹 题解:h ...
- DP百题练(一)
目录 DP百题练(一) 线性 DP 简述 Arithmetic Progressions [ZJOI2006]物流运输 LG1095 守望者的逃离 LG1103 书本整理 CH5102 移动服务 LG ...
随机推荐
- protobuf总结
1.protobuf是什么? protobuf(protocol buffers)是一种语言中立,平台无关,可扩展的序列化数据的格式,可以用于通信协议,数据存储等. protobuf 相比于xml,j ...
- Web Scraper 高级用法——使用 CouchDB 存储数据 | 简易数据分析 18
这是简易数据分析系列的第 18 篇文章. 利用 web scraper 抓取数据的时候,大家一定会遇到一个问题:数据是乱序的.在之前的教程里,我建议大家利用 Excel 等工具对数据二次加工排序,但还 ...
- spark下载安装,运行examples(spark一)
1.官方网址 http://spark.apache.org/ image.png 2.点击下载 下载最新版本目前是(2.4.3)此spark预设为hadoop2.7或者更高版本,我前面安装的是had ...
- 14-jmeter分布式环境
1.分布式概念: jmeter做性能时,会消耗本地机器资源 本机无法没有限制的创建运行线程(一般500线程就差不多会报错) 一般这时候会用到分布式的环境 2.环境: 前提条件:环境一致(有时候可以直接 ...
- Python中关于字符串你应该知道这些...
# Python中字符串的常见用法### 定义:带有双引号/单引号/三引号### 双引号:适用于所写的字符串里没有双引号的.例如:"凡是“辛苦”必是礼物"报错### 单引号:适用 ...
- 国外的一个代码 仓库 github --- 里面类似一个svn 的代码仓库
https://github.com/wzhanke/shell 用户:wzh.e 邮箱:wzh.e@x.com 登陆密码:*wzh.e8*9
- bat批处理文件搞定所有系统问题
bat批处理文件搞定所有系统问题 分类: WINDOWS -----------bat批处理文件搞定所有系统问题--------- 一.查漏补缺——给系统功能添把火 我们的操作系统虽然功 ...
- 【three.js第七课】鼠标点击事件和键盘按键事件的使用
当我们使用鼠标操作three.js渲染出的对象时,不仅仅只是仅限用鼠标对场景的放大.缩小.旋转而已,还有鼠标左键.右键的点击以及键盘各种按键等等的事件.我们需要捕获这些事件,并在这些事件的方法里进行相 ...
- phoenix 索引实践
准备工作 创建测试表 CREATE TABLE my_table ( rowkey VARCHAR NOT NULL PRIMARY KEY, v1 VARCHAR, v2 VARCHAR, v3 V ...
- RabbitMQ 消息队列入门
文档 入门 主要的内容:one two three four five six seven 前言 中间件 消息队列 异步处理,注册完发短信 应用解耦,订单接口调用扣库存接口,失败了怎么办? 流量削峰, ...