Akaike information criterion,AIC是什么?一个用来筛选模型的指标。AIC越小模型越好,通常选择AIC最小的模型。第一句话好记,第二句话就呵呵了,小编有时候就会迷惑AIC越大越好还是越小越好。所以,还是要知其所以然的。

  在AIC之前,我们需要知道Kullback–Leibler information或 Kullback–Leiblerdistance。对于一批数据,假设存在一个真实的模型f,还有一组可供选择的模型g1、g2、g3…gi,而K-L 距离就是用模型 gi 去估计真实模型 f 过程中损失的信息。可见K-L 距离越小,用模型 gi 估计真实模型 f 损失的信息越少,相应的模型 gi 越好。

  然后,问题来了。怎么计算每个模型 gi 和真实模型 f 的距离呢?因为我们不知道真实模型 f,所以没办法直接计算每个模型的K-L距离,但可以通过信息损失函数去估计K-L距离。日本统计学家Akaike发现log似然函数和K-L距离有一定关系,并在1974年提出Akaike information criterion,AIC。通常情况下,AIC定义为:AIC=2k-2ln(L),其中k是模型参数个数,L是似然函数。

  -2ln(L)反映模型的拟合情况,当两个模型之间存在较大差异时,差异主要体现在似然函数项-2ln(L),当似然函数差异不显著时,模型参数的惩罚项2k则起作用,随着模型中参数个数增加,2k增大,AIC增大,从而参数个数少的模型是较好的选择。AIC不仅要提高模型拟合度,而且引入了惩罚项,使模型参数尽可能少,有助于降低过拟合的可能性。然后,选一个AIC最小的模型就可以了。

  然而,咱们平常用的最多的SPSS软件却不直接给出AIC。不过不用担心,以线性回归为例,SPSS虽不给出AIC,但会给出残差平方和,即残差Residual对应的Sum of Squares。然后,AIC=nln(残差平方和/n) 2k。其中模型参数个数k包括截距项和残差项,其中残差项往往被忽略。

比如,针对n=21的数据,某线性模型纳入2个自变量x1和x2,k应为4。从SPSS给出的方差分析表,可知AIC=21*ln(21.809/21) 2*4=8.7941。

平方和

df

均方

F

Sig

回归

240.153

2

120.076

99.103

0.000

残差

21.809

18

1.212

总计

261.962

20

除AIC之外,还有很多模型选择的指标,比如和AIC联系比较密切的BIC,我们会在以后的文章和大家讨论。

R Akaike information criterion,AIC,一个越小越好的指标的更多相关文章

  1. 赤池信息量准则 ( Akaike information criterion)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  2. 让reddit/r/programming炸锅的一个帖子,还是挺有意思的

    这是原帖 http://www.reddit.com/r/programming/comments/358tnp/five_programming_problems_every_software_en ...

  3. R入门-第一次写了一个完整的时间序列分析代码

    纪念一下,在心心念念想从会计本科转为数据分析师快两年后,近期终于迈出了使用R的第一步,在参考他人的例子前提下,成功写了几行代码.用成本的角度来说,省去了部门去买昂贵的数据分析软件的金钱和时间,而对自己 ...

  4. 网站的Information Architecture--构建一个最优用户体验的site structure

    http://conversionxl.com/website-information-architecture-optimal-user-experience/ 在网站上应该有什么类型的conten ...

  5. <R语言编程艺术>的一个错误以及矩阵相加

    R语言编程艺术讲矩阵这节时,举了个随机噪声模糊罗斯福总统画像的例子.但是里面似乎有个错误,例子本意是区域外的值保持不变,而选定区域的值加一个随机值,但是实际情况是两个行列不相等的矩阵相加,会报错,如果 ...

  6. R+NLP︱text2vec包——四类文本挖掘相似性指标 RWMD、cosine、Jaccard 、Euclidean (三,相似距离)

    要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 在之前的开篇提到了text2vec ...

  7. 最大似然估计实例 | Fitting a Model by Maximum Likelihood (MLE)

    参考:Fitting a Model by Maximum Likelihood 最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定 ...

  8. Study notes for Clustering and K-means

    1. Clustering Analysis Clustering is the process of grouping a set of (unlabeled) data objects into ...

  9. R语言入门视频笔记--9--随机与数据描述分析

    古典概型的样本总量是一定的,且每种可能的可能性是相同的, 1.中位数:median(x) 2.百分位数:quantile(x)或者quantile(x,probe=seq(0,1,0.2)) #后面这 ...

随机推荐

  1. C++关键字总结【新手必学】

    const 关键字——常量const 与definedefine是预编译器的编译指令,它从C语言兼容下来,工作方式与文本编辑器中的全局搜索和替换相似.define定义的常量的意义在它开始的地方持续到文 ...

  2. NSObject类的API介绍

    这篇文章围绕的对象就是NSObject.h文件,对声明文件中的属性.方法进行必要的“翻译”. 该文件大致由两部分组成:NSObject协议和NSObject类. (一)NSObject协议 - (BO ...

  3. hadoop启动报错处理

    1.      hadoop启动报错 1.1.    问题1 util.NativeCodeLoader: Unable to load native-hadoop library for your ...

  4. Linux下清空文件的3种方法

    1.echo -n > test.log #-n选项可以去掉空行 2.cat /dev/null > test.log 3.truncate -s 0 test.log

  5. Spring Boot Security JWT 整合实现前后端分离认证示例

    前面两章节我们介绍了 Spring Boot Security 快速入门 和 Spring Boot JWT 快速入门,本章节使用 JWT 和 Spring Boot Security 构件一个前后端 ...

  6. 5 HTML脚本&字符实体&URL

    HTML脚本: 用<script>标签定义客户端脚本,比如JavaScript script元素即可包含脚本语句,也可以通过src属性指向外部脚本文件 JavaScript常用于图片操作. ...

  7. 【转】CGI 和 FastCGI 协议的运行原理

    介绍 深入CGI协议 CGI的运行原理 CGI协议的缺陷 深入FastCGI协议 FastCGI协议运行原理 为什么是 FastCGI 而非 CGI 协议 CGI 与 FastCGI 架构 再看 Fa ...

  8. Java面向对象编程 -1.2

    类与对象简介 类是某一类事物的共性的抽象概念 而对象描述的是一个具体的产物 类是一个模板,而对象才是类可以使用的实例,先有类再有对象 在类之中一般都会有两个组成: 成员属性(Filed) :有些时候为 ...

  9. Linux 下面搭建KMS服务器

    1. 下载安装Linux 版的KMS服务软件 # wget https://github.com/Wind4/vlmcsd/releases/download/svn1111/binaries.tar ...

  10. Eclipse中java代码注释变成乱码的问题

    今天在查看曾经写过的代码时发生了一件很是让人头疼的事: 我写的所有注释全部都变成了了乱码,曾经刚入门时也是经常遇到类似的问题,解决起来很快,每天可能都会在工作空间里看到,但是随着时间的推移,写代码的规 ...