ES查询实例
注:转载自https://www.cnblogs.com/yjf512/p/4897294.html 作者:叶剑锋
elasticsearch 查询(match和term)
es中的查询请求有两种方式,一种是简易版的查询,另外一种是使用JSON完整的请求体,叫做结构化查询(DSL)。
由于DSL查询更为直观也更为简易,所以大都使用这种方式。
DSL查询是POST过去一个json,由于post的请求是json格式的,所以存在很多灵活性,也有很多形式。
这里有一个地方注意的是官方文档里面给的例子的json结构只是一部分,并不是可以直接黏贴复制进去使用的。一般要在外面加个query为key的机构。
match
最简单的一个match例子:
查询和"我的宝马多少马力"这个查询语句匹配的文档。
{
"query": {
"match": {
"content" : {
"query" : "我的宝马多少马力"
}
}
}
}
上面的查询匹配就会进行分词,比如"宝马多少马力"会被分词为"宝马 多少 马力", 所有有关"宝马 多少 马力", 那么所有包含这三个词中的一个或多个的文档就会被搜索出来。
并且根据lucene的评分机制(TF/IDF)来进行评分。
match_phrase
比如上面一个例子,一个文档"我的保时捷马力不错"也会被搜索出来,那么想要精确匹配所有同时包含"宝马 多少 马力"的文档怎么做?就要使用 match_phrase 了
{
"query": {
"match_phrase": {
"content" : {
"query" : "我的宝马多少马力"
}
}
}
}
完全匹配可能比较严,我们会希望有个可调节因子,少匹配一个也满足,那就需要使用到slop。
{
"query": {
"match_phrase": {
"content" : {
"query" : "我的宝马多少马力",
"slop" : 1
}
}
}
}
multi_match
如果我们希望两个字段进行匹配,其中一个字段有这个文档就满足的话,使用multi_match
{
"query": {
"multi_match": {
"query" : "我的宝马多少马力",
"fields" : ["title", "content"]
}
}
}
但是multi_match就涉及到匹配评分的问题了。
我们希望完全匹配的文档占的评分比较高,则需要使用best_fields
{
"query": {
"multi_match": {
"query": "我的宝马发动机多少",
"type": "best_fields",
"fields": [
"tag",
"content"
],
"tie_breaker": 0.3
}
}
}
意思就是完全匹配"宝马 发动机"的文档评分会比较靠前,如果只匹配宝马的文档评分乘以0.3的系数
我们希望越多字段匹配的文档评分越高,就要使用most_fields
{
"query": {
"multi_match": {
"query": "我的宝马发动机多少",
"type": "most_fields",
"fields": [
"tag",
"content"
]
}
}
}
我们会希望这个词条的分词词汇是分配到不同字段中的,那么就使用cross_fields
{
"query": {
"multi_match": {
"query": "我的宝马发动机多少",
"type": "cross_fields",
"fields": [
"tag",
"content"
]
}
}
}
term
term是代表完全匹配,即不进行分词器分析,文档中必须包含整个搜索的词汇
{
"query": {
"term": {
"content": "汽车保养"
}
}
}
查出的所有文档都包含"汽车保养"这个词组的词汇。
使用term要确定的是这个字段是否“被分析”(analyzed),默认的字符串是被分析的。
拿官网上的例子举例:
mapping是这样的:
PUT my_index
{
"mappings": {
"my_type": {
"properties": {
"full_text": {
"type": "string"
},
"exact_value": {
"type": "string",
"index": "not_analyzed"
}
}
}
}
}
PUT my_index/my_type/1
{
"full_text": "Quick Foxes!",
"exact_value": "Quick Foxes!"
}
其中的full_text是被分析过的,所以full_text的索引中存的就是[quick, foxes],而extra_value中存的是[Quick Foxes!]。
那下面的几个请求:
GET my_index/my_type/_search
{
"query": {
"term": {
"exact_value": "Quick Foxes!"
}
}
}
请求的出数据,因为完全匹配
GET my_index/my_type/_search
{
"query": {
"term": {
"full_text": "Quick Foxes!"
}
}
}
请求不出数据的,因为full_text分词后的结果中没有[Quick Foxes!]这个分词。
bool联合查询: must,should,must_not
如果我们想要请求"content中带宝马,但是tag中不带宝马"这样类似的需求,就需要用到bool联合查询。
联合查询就会使用到must,should,must_not三种关键词。
这三个可以这么理解
- must: 文档必须完全匹配条件
- should: should下面会带一个以上的条件,至少满足一个条件,这个文档就符合should
- must_not: 文档必须不匹配条件
比如上面那个需求:
{
"query": {
"bool": {
"must": {
"term": {
"content": "宝马"
}
},
"must_not": {
"term": {
"tags": "宝马"
}
}
}
}
}
ES查询实例的更多相关文章
- .NetCore下ES查询驱动 PlainElastic .Net 升级官方驱动 Elasticsearch .Net
1.背景 由于历史原因,笔者所在的公司原有的ES查询驱动采用的是 PlainElastic.Net, 经过询问原来是之前PlainElastic.Net在园子里文档较多,上手比较容易,所以最初作者选用 ...
- SqlSugar-执行Sql语句查询实例
使用SqlSugar执行sql语句 1.简单查询 SqlSugarClient db = SugarContext.GetInstance(); //执行sql语句,处理 //1.执行sql,转成li ...
- 【MySQL】分页查询实例讲解
MySQL分页查询实例讲解 1. 前言 本文描述了团队在工作中遇到的一个MySQL分页查询问题,顺带讲解相关知识点,为后来者鉴.本文的重点不是"怎样"优化表结构和SQL语句,而是探 ...
- ElasticSearch 学习记录之ES查询添加排序字段和使用missing或existing字段查询
ES添加排序 在默认的情况下,ES 是根据文档的得分score来进行文档额排序的.但是自己可以根据自己的针对一些字段进行排序.就像下面的查询脚本一样.下面的这个查询是根据productid这个值进行排 ...
- 使用ssm(spring+springMVC+mybatis)创建一个简单的查询实例(三)(错误整理篇)
使用ssm(spring+springMVC+mybatis)创建一个简单的查询实例(一) 使用ssm(spring+springMVC+mybatis)创建一个简单的查询实例(二) 以上两篇已经把流 ...
- 使用ssm(spring+springMVC+mybatis)创建一个简单的查询实例(二)(代码篇)
这篇是上一篇的延续: 用ssm(spring+springMVC+mybatis)创建一个简单的查询实例(一) 源代码在github上可以下载,地址:https://github.com/guoxia ...
- 使用ssm(spring+springMVC+mybatis)创建一个简单的查询实例(一)
梳理下使用spring+springMVC+mybatis 整合后的一个简单实例:输入用户的 ID,之后显示用户的信息(此次由于篇幅问题,会分几次进行说明,此次是工程的创建,逆向生成文件以及这个简单查 ...
- php MongoDB driver 查询实例
//是否只查mx $mx_on_switch = I("post.mx_on_switch"); //mx模糊查询 $mx_vague_check = I("post.m ...
- ES查询之刨根问底
昨天有一个需求,就是想要根据某个网关url做过滤,获取其下面所有的上下文nginx日志:如果直接"query":"https://XXX/YYY/ZZZ"发现有 ...
随机推荐
- Django专题-AJAX
AJAX准备知识:JSON 什么是 JSON ? JSON 指的是 JavaScript 对象表示法(JavaScript Object Notation) JSON 是轻量级的文本数据交换格式 JS ...
- Python常用模块小结
目录 Python常用模块小结 一.Python常用模块小结 1.1 time模块 1.2 datetime模块 1.3 random模块 1.4 os模块 1.5 sys模块 1.6 json模块 ...
- Educational Codeforces Round 66 差G
Educational Codeforces Round 66 F 题意:长度为 n 的序列,求有多少个区间 \([l,r]\) ,使得其构成了一个 1~r-l+1 的排列. \(n \le 3*10 ...
- VerificationCodeService
package me.zhengjie.system.domain; import lombok.AllArgsConstructor; import lombok.Data; import lomb ...
- day41-进程-管道
#1.管道Pipe:双向通信: from multiprocessing import Pipe p1,p2 = Pipe() p1.send('hello') print(p2.recv()) p2 ...
- css后续篇
5.盒模型 在css中,box model这一术语是用来设计和布局时使用的,在网页中显示一些方方正正的盒子,这种盒子就叫盒模型 盒模型有两种: 标准模型和IE模型(了解) 盒模型属性 width : ...
- VBA/VB6/VBS/VB.NET/C#/Python/PowerShell都能调用的API封装库
API函数很强大,但是声明的时候比较繁琐. 我开发的封装库,包括窗口.键盘.鼠标.消息等常用功能.用户不需要添加API函数的声明,就可以用到API的功能. 在VBA.VB6的引用对话框中引用API.t ...
- Missing separate debuginfos, use: debuginfo-install glibc-2.12-1.212.el6_10.3.x86_64
在使用gdb调试时出现Missing separate debuginfos, use: debuginfo-install glibc-2.12-1.212.el6_10.3.x86_64提示 解决 ...
- 允许外部访问Windows本机的指定端口
背景:目前公司有一台公网Windows服务器,有公网IP和内网IP,防火墙已开启 需求:9999端口需要对外开放 方案:在防火墙的入站规则里添加一条规则,使外部能够访问9999端口 问题:添加好规则后 ...
- C++头文件和std命名空间
C++ 是在C语言的基础上开发的,早期的 C++ 还不完善,不支持命名空间,没有自己的编译器,而是将 C++ 代码翻译成C代码,再通过C编译器完成编译.这个时候的 C++ 仍然在使用C语言的库,std ...