给定一个n*m的二维整数数组,用来表示一个迷宫,数组中只包含0或1,其中0表示可以走的路,1表示不可通过的墙壁。

最初,有一个人位于左上角(1, 1)处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。

请问,该人从左上角移动至右下角(n, m)处,至少需要移动多少次。

数据保证(1, 1)处和(n, m)处的数字为0,且一定至少存在一条通路。

输入格式

第一行包含两个整数n和m。

接下来n行,每行包含m个整数(0或1),表示完整的二维数组迷宫。

输出格式

输出一个整数,表示从左上角移动至右下角的最少移动次数。

数据范围

1≤n,m≤1001≤n,m≤100

输入样例:

5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

输出样例:

8
思路:

换句人话------->初始化队列,While队列不为空,每次把队头(auto t = q.front()然后q.pop(或者 auto t = q[h++]))拿出来,然后拓展完成后t = (q.push({x,y}或者q[++t]={x,y});

 
 #include<iostream>
#include<cstring> using namespace std; typedef pair<int,int> PII;//存储状态
const int N = ;
PII q[N*N];
int d[N][N];//存距离
int g[N][N];//存地图
int r,c;//行列 int bfs(){
int tt = ,hh = ;//定义队头,和队尾
q[] = {,};//初始化队列状态 memset(d,-,sizeof d);//将全部的地图初始化为-1,如果是0的话就是我们走过的单元 d[][] = ;//第一个初始化为0也就是走过的 int dx[] = {-,,,},dy[]={,,,-};//根据上右下左,表示移动的方向 while(hh <= tt){//当队头不为空
auto t = q[hh ++];//去头
for(int i = ;i < ;i++){//操作的四个方向
int x = t.first+dx[i],y = t.second+dy[i];//定义移动方向的坐标
if(x >= && x < r && y >= && y < c && g[x][y] == && d  [x][y] == -){
d[x][y] = d[t.first][t.second] + ;// 状态拓展----难点就是d[t.first][t.second]是d[x][y]的前一个位置的最大距离emmmmm卡了我好久
q[++tt] = {x,y};//状态转移
}
}
}
return d[r - ][c - ];
} int main(){
scanf("%d%d",&r,&c);
for(int i = ;i < r;i++)
for(int j = ;j < c;j++)
scanf("%d",&g[i][j]); printf("%d",bfs()); }
 #include<iostream>
#include<cstring>
#include<queue>//加上队列函数
using namespace std; typedef pair<int,int> PII;//存储状态
const int N = ;
int d[N][N];//存距离
int g[N][N];//存地图
int r,c;//行列
int bfs(){
queue<PII> q;
q.push({,});//初始化队列状态 memset(d,-,sizeof d);//将全部的地图初始化为-1,如果是0的话就是我们走过的单元 d[][] = ;//第一个初始化为0也就是走过的 int dx[] = {-,,,},dy[]={,,,-};//根据上右下左,表示移动的方向 while(q.size()){//当队头不为空
//去头
auto t = q.front();
q.pop();
for(int i = ;i < ;i++){//操作的四个方向
int x = t.first+dx[i],y = t.second+dy[i];//定义移动方向的坐标
if(x >= && x < r && y >= && y < c && g[x][y] == && d[x][y] == -){
d[x][y] = d[t.first][t.second] + ;// 状态拓展
q.push({x,y});//状态转移
}
}
}
return d[r - ][c - ];
} int main(){
scanf("%d%d",&r,&c);
for(int i = ;i < r;i++)
for(int j = ;j < c;j++)
scanf("%d",&g[i][j]); printf("%d",bfs()); }

Acwing 844.裸迷宫的更多相关文章

  1. ACWING 844. 走迷宫

    地址 https://www.acwing.com/problem/content/description/846/ 给定一个n*m的二维整数数组,用来表示一个迷宫,数组中只包含0或1,其中0表示可以 ...

  2. 844. 走迷宫(bfs模板)

    给定一个n*m的二维整数数组,用来表示一个迷宫,数组中只包含0或1,其中0表示可以走的路,1表示不可通过的墙壁. 最初,有一个人位于左上角(1, 1)处,已知该人每次可以向上.下.左.右任意一个方向移 ...

  3. 算法竞赛——BFS广度优先搜索

    BFS 广度优先搜索:一层一层的搜索(类似于树的层次遍历) BFS基本框架 基本步骤: 初始状态(起点)加到队列里 while(队列不为空) 队头弹出 扩展队头元素(邻接节点入队) 最后队为空,结束 ...

  4. DP背包问题学习笔记及系列练习题

    01 背包: 01背包:在M件物品中取出若干件物品放到背包中,每件物品对应的体积v1,v2,v3,....对应的价值为w1,w2,w3,,,,,每件物品最多拿一件. 和很多DP题一样,对于每一个物品, ...

  5. HDU1269 迷宫城堡(裸强连通分量)

    Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A ...

  6. HDU1269迷宫城堡(裸Tarjan有向图求强连通分量个数)

    迷宫城堡Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  7. HDU 1272小希的迷宫(裸并查集,要判断是否构成环,是否是连通图)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1272 小希的迷宫 Time Limit: 2000/1000 MS (Java/Others)    ...

  8. hdu - 1269 迷宫城堡 (强连通裸题)

    http://acm.hdu.edu.cn/showproblem.php?pid=1269 判断一个图是不是强连通,缩点之后判断顶点数是不是为1即可. #include <iostream&g ...

  9. 51nod 1459 迷宫游戏(dij)

    题目链接:51nod 1459 迷宫游戏 dij裸题. #include<cstdio> #include<cstring> #include<algorithm> ...

随机推荐

  1. centos 7搭建 strongSwan

    https://blog.csdn.net/sqzhao/article/details/76093994

  2. 懒人JS

    1.文本框只能输入数字代码(小数点也不能输入) <input onkeyup="this.value=this.value.replace(/\D/g,'')" onafte ...

  3. AUTOSAR-Specification of Watchdog Manager 阅读

    一.开门狗管理有三种机制 1.定周期任务实时监控 2.非定周期任务执行时间监控 3.逻辑监控,执行顺序. 二.受监控的实体和检查点 Watchdog Manager监督软件的执行.监督的逻辑单位是受监 ...

  4. 静态、动态cell区别

    静态cell:cell数目固定不变,图片/文字固定不变(如qq设置列表可使用静态cell加载) 动态cell:cell数目较多,且图片/文字可能会发生变化(如应网络请求,淘宝列表中某个物品名称或者图片 ...

  5. [原]UEFI+GPT启动VHD

    1. 缘起 2. 创建VHD文件并写入系统镜像到VHD文件 2.1 制作VHD文件 2.1.1 纯界面创建 2.1.2 命令行创建 2.2 把系统镜像写入VHD文件 3. 添加VHD文件到系统引导 3 ...

  6. 实现TabControl 选项卡首个标签缩进的方法

    借用一张网图说明需求 在网上找了一圈,没有找到直接通过API或者重绘TabControl 的解决方法,最后灵机一动想到了一个折(tou)中(lan)的解决办法 Tab1.TabPages.Clear( ...

  7. 史上最强maven配置详情

    史上最强maven配置详情 优点 对第三方依赖库进行了统一的版本管理 统一了构建过程 统一了项目的目录结构 构建 清理 : mvn clear 编译 : mvn compile 测试 : mvn te ...

  8. poj-3658 Artificial Lake(模拟)

    http://poj.org/problem?id=3658 Description The oppressively hot summer days have raised the cows' cl ...

  9. java静态方法和静态字段

    public class Dog{ public static void main(String[]args){ A a= new A(); a.add(); //java实例对象可以访问类的静态方法 ...

  10. linux_nano命令

    nano是一个字符终端的文本编辑器,有点像DOS下的editor程序.它比vi/vim要简单得多,比较适合Linux初学者使用.某些Linux发行版的默认编辑器就是nano. nano命令可以打开指定 ...