题目

  点这里看题目。

分析

  先特判掉\(K=2\)的情况。

  首先可以考虑到一个简单 DP :

  \(f(i)\):前\(i\)张牌的最大贡献。

  转移可以\(O(n^2)\)地枚举区间众数,但它不存在决策单调性,众数查询也很难优化。

  考虑另一种转移。我们对于\(f(i)\),只取它结尾的点数的后缀

\[f(i)=\max_{1\le j\le i,a_j=a_i}\{f(j-1)+s(i)-s(j)+1\}
\]

  其中的\(s_i\)为前\(i\)张牌里与第\(i\)张点数相同的牌的张数。

  这个转移从全局来看也不存在单调性,但实际上,它具有部分单调性

  对于所有的结尾点数相同的\(f\),除开\(i=j\)的转移,剩下的转移中它的最优决策点与前面的结尾点数相同的\(f\)的已有决策点是单调不增的

  利用好这个性质,我们就可以对于每个颜色维护一个\(i\not=j\)的转移的单调栈,计算新的值的时候把已有的不优的决策点弹掉,插入新的值的时候二分一下右边界,时间是\(O(n\log_2n)\)。

代码

#include <cmath>
#include <cstdio>
#include <vector>
using namespace std; const int MAXN = 1e6 + 5; template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
} template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
} template<typename _T>
_T MAX( const _T a, const _T b )
{
return a > b ? a : b;
} vector<int> pos[MAXN]; double pw[MAXN], f[MAXN];
int stk[MAXN], but[MAXN], top[MAXN], rig[MAXN];
int A[MAXN], pre[MAXN], tot[MAXN], vised[MAXN];
int N, K; double getDP( const int i, const int j )
{
return f[j - 1] + pw[pre[i] - pre[j] + 1];
} int get( const int i, const int j )
{
int id = A[i];
int l = vised[id] - 1, r = pos[id].size() - 1, mid;
while( r - l > 1 )
{
mid = l + r >> 1;
if( getDP( pos[id][mid], i ) >= getDP( pos[id][mid], j ) ) l = mid;
else r = mid - 1;
}
if( getDP( pos[id][r], i ) >= getDP( pos[id][r], j ) ) return pos[id][r];
return pos[id][l];
} int main()
{
read( K ), read( N );
for( int i = 1 ; i <= N ; i ++ ) pw[i] = pow( i, 1.0 * K / 2 );
for( int i = 1 ; i <= N ; i ++ ) read( A[i] ), pre[i] = ++ tot[A[i]], pos[A[i]].push_back( i );
if( K == 2 ) { printf( "%.10lf\n", ( double ) N ); return 0; }
int siz = 0;
for( int i = 1 ; i <= N ; i ++ )
if( tot[i] )
but[i] = siz + 1, top[i] = siz, siz += tot[i];
int id;
for( int i = 1 ; i <= N ; i ++ )
{
f[i] = f[i - 1] + 1, id = A[i];
while( but[id] < top[id] && i > rig[top[id] - 1] ) top[id] --;
if( but[id] <= top[id] ) f[i] = MAX( f[i], getDP( i, stk[top[id]] ) );
while( but[id] < top[id] && get( i, stk[top[id]] ) >= rig[top[id] - 1] ) top[id] --;
if( but[id] <= top[id] ) rig[top[id]] = get( i, stk[top[id]] );
stk[++ top[id]] = i, rig[top[id]] = N;
vised[id] ++;
}
printf( "%.10lf\n", f[N] );
return 0;
}

[noi.ac省选模拟赛20200606]赌怪的更多相关文章

  1. NOI.AC省选模拟赛第一场 T1 (树上高斯消元)

    link 很容易对于每个点列出式子 \(f_{x,y}=(f_{x,y-1}+f_{x,y}+f_{x,y+1}+f_{x+1,y})/4\)(边角转移类似,略) 这个转移是相互依赖的就gg了 不过你 ...

  2. [NOI.AC省选模拟赛3.31] 星辰大海 [半平面交]

    题面 传送门 思路 懒得解释了......也是比较简单的结论 但是自己看到几何就退缩了...... 下周之内写一个计算几何的学习笔记! Code #include<iostream> #i ...

  3. [NOI.AC省选模拟赛3.31] 附耳而至 [平面图+最小割]

    题面 传送门 思路 其实就是很明显的平面图模型. 不咕咕咕的平面图学习笔记 用最左转线求出对偶图的点,以及原图中每个边两侧的点是谁 建立网络流图: 源点连接至每一个对偶图点,权值为这个区域的光明能量 ...

  4. [NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]

    题面 传送门 思路 这题其实蛮好想的......就是我考试的时候zz了,一直没有想到标记过的可以不再标记,总复杂度是$O(n)$ 首先我们求个前缀和,那么$ans_i=max(pre[j]+pre[i ...

  5. [NOI.AC省选模拟赛3.23] 染色 [点分治+BFS序]

    题面 传送门 重要思想 真的是没想到,我很久以来一直以为总会有应用的$BFS$序,最终居然是以这种方式出现在题目中 笔记:$BFS$序可以用来处理限制点对距离的题目(综合点分树使用) 思路 本题中首先 ...

  6. [NOI.AC省选模拟赛3.23] 集合 [数学]

    题面 传送门 一句话题意: 给定$n\leq 1e9,k\leq 1e7,T\leq 1e9$ 设全集$U=\lbrace 1,2,3,...n\rbrace $,求$(min_{x\in S}\lb ...

  7. [noi.ac省选模拟赛]第12场题解集合

    题目 比赛界面. T1 数据范围明示直接\(O(n^2)\)计算,问题就在如何快速计算. 树上路径统计通常会用到差分方法.这里有两棵树,因此我们可以做"差分套差分",在 A 树上对 ...

  8. [noi.ac省选模拟赛]第10场题解集合

    题目 比赛界面. T1 不难想到,对于一个与\(k\)根棍子连接的轨道,我们可以将它拆分成\(k+1\)个点,表示这条轨道不同的\(k+1\)段. 那么,棍子就成为了点与点之间的边.可以发现,按照棍子 ...

  9. [noi.ac省选模拟赛]第11场题解集合

    题目   比赛界面. T1   比较简单.容易想到是求鱼竿的最大独立集.由于题目的鱼竿可以被分割为二分图,就可以想到最大匹配.   尝试建边之后会发现边的数量不小,但联系题目性质会发现对于一条鱼竿,它 ...

随机推荐

  1. 蓝桥杯 试题 算法提高 宰羊 DP解决

    问题描述 炫炫回了内蒙,肯定要吃羊肉啦,所有他家要宰羊吃. 炫炫家有N只羊,羊圈排成一排,标号1~N.炫炫每天吃掉一只羊(这食量!其实是放生啦),吃掉的羊的邻居会以为它被放生了,然后又会告诉他们的邻居 ...

  2. java——assert(断言)方法

    包:org.junit.Assert; assertEqual(a,b,[msg='测试失败时打印的信息']): 断言a和b是否相等,相等则测试用例通过. assertNotEqual(a,b,[ms ...

  3. MyBatis—— org.apache.ibatis.binding.BindingException: Type interface com.web.mybatis.i.PersonMapper is not known to the MapperRegistry.

    报错信息: Exception in thread "main" org.apache.ibatis.binding.BindingException: Type interfac ...

  4. 转 document.compatMode介绍

    对于document.compatMode,很多朋友可能都根我一样很少接触,知道他的存在却不清楚他的用途.今天在ext中看到 document.compatMode的使用,感觉这个对于我们开发兼容性的 ...

  5. 前端内网穿透,localtunnel你值得拥有!

    一个前端在调试本地页面时,总会有些稀奇古怪的需求,比如产品立刻要看你的页面效果,而此时有没有上线环境折腾给他看,那此时通过内网穿透的方式,实时把你的项目生成一个在线链接丢给他,让他去找那一像素的bug ...

  6. Tortoise svn 基础知识

    1 不跟踪文件.文件夹 1.1  文件.文件夹已经被svn跟踪 将本地文件.文件夹删除(windows删除文件的删除,快捷键是shift+delete),然后执行svn  update 将服务器同步到 ...

  7. MOS管的栅极和源极之间的电阻

    MOS管的栅极和源极之间的电阻: 一是为场效应管提供偏置电压:二是起到泻放电阻的作用:保护栅极G-源极S: 保护栅极G-源极S: 场效应管的G-S极间的电阻值是很大的,这样只要有少量的静电就能使他的G ...

  8. C# 基础之参数修饰符

    参数传参的时候一共有四种传递方式: 一.无修饰符传参 也就是说没有传参修饰符,这种情况传过去的是一个副本,本体是不会被改变的 二.out传参修饰符 在传参的参数全面加一个out: public voi ...

  9. springboot 启动报错"No bean named 'org.springframework.context.annotation.ConfigurationClassPostProcessor.importRegistry' available"

    1.问题 springboot启动报错 "D:\Program Files\Java\jdk-11\bin\java.exe" -XX:TieredStopAtLevel=1 -n ...

  10. (一)DAO设计及BaseDAO和BookDAO的实现

    1.总体架构 MVC 设计模式:Model:POJO(Plain Old Java Object) Controller:ServletView:JSP + EL + JSTL 2.技术选型 数据库: ...