1. 怎么样计算偏导数来实现logistic回归的梯度下降法
    1. 它的核心关键点是其中的几个重要公式用来实现logistic回归的梯度下降法
  2. 接下来开始学习logistic回归的梯度下降法




  1. logistic回归的公式

    1. 现在只考虑单个样本的情况,关于该样本的损失函数定义如上面第三个公式,其中a是logistic回归的输出,y是样本的基本真值标签值,
  2. 下面写出该样本的偏导数流程图
    1. 假设样本只有两个特征x1和x2
    2. 为了计算Z,我们需要输入参数w1和w2和b
      1. 因此在logistic回归中,我们要做的就是变换参数w和b的值,来最最小化损失函数,
    3. 在前面,我们已经前向传播步骤,在单个训练样本上,计算损失函数,现在我们开始讨论怎么样向后计算偏导数,(重点)
      1. 要想计算损失函数L的导数,
        1. 首先,我们需要向前一步,先计算损失函数的导数,计算函数L关于a的导数,在代码中,只需要使用da来表示这个变量,

          1. 事实上,
          2. 损失函数导数的计算公式就是这样,最终结果关于变量a的导数
        2. 现在可以再向后一步,计算dz,dz是损失函数关于z的导数,
          1. 事实上
        3. 现在,向后传播的最后一步,w和b需要如何变化,
          1. 特别的关于w1的导数(函数L对w1求导)

          2. 关于w2的求导
          3. 关于b的求导
            1. db=dz=a-y
        4. 因此,关于单个样本的梯度下降法,所需要做的就是使用这个计算公式计算dz,然后计算dw1、dw2、db,然后
          1. 更新w1位w1减去学习率乘以dw1
          2. 更新w2位w2减去学习率乘以dw2
          3. 更新b为b减去学习率乘以db
        5. 这就是单个样本实例的一次梯度更新步骤
    4. 但是训练logistic回归模型,不仅仅只有一个训练样本,而是有m个训练样本的整个训练集,
      1. 下一节将会介绍,这些想法是如何应用到整个训练样本集当中的。而不仅仅是单个样本。

2.9 logistic回归中的梯度下降法(非常重要,一定要重点理解)的更多相关文章

  1. 斯坦福《机器学习》Lesson4感想--1、Logistic回归中的牛顿方法

    在上一篇中提到的Logistic回归是利用最大似然概率的思想和梯度上升算法确定θ,从而确定f(θ).本篇将介绍还有一种求解最大似然概率ℓ(θ)的方法,即牛顿迭代法. 在牛顿迭代法中.如果一个函数是,求 ...

  2. 对数几率回归法(梯度下降法,随机梯度下降与牛顿法)与线性判别法(LDA)

    本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin ...

  3. 在matlab中实现梯度下降法

    梯度下降法的原理,本文不再描述,请参阅其它资料. 梯度下降法函数function [k ender]=steepest(f,x,e),需要三个参数f.x和e,其中f为目标函数,x为初始点,e为终止误差 ...

  4. Logistic回归中损失函数求导证明过程

  5. Logistic 回归(sigmoid函数,手机的评价,梯度上升,批处理梯度,随机梯度,从疝气病症预测病马的死亡率

    (手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如 ...

  6. 机器学习公开课笔记(3):Logistic回归

    Logistic 回归 通常是二元分类器(也可以用于多元分类),例如以下的分类问题 Email: spam / not spam Tumor: Malignant / benign 假设 (Hypot ...

  7. 对线性回归,logistic回归和一般回归的认识

    原文:http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html#3281650 对线性回归,logistic回归和一般回归的认识 ...

  8. 线性回归,logistic回归和一般回归

    1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数 ...

  9. Logistic回归(逻辑回归)和softmax回归

    一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类, ...

随机推荐

  1. FloatingActionButton 实现类似 闲鱼 App 底部导航凸起按钮

    一.Flutter FloatingActionButton 介绍 FloatingActionButton 简称 FAB,可以实现浮动按钮,也可以实现类似闲鱼 app 的地步凸起导航   child ...

  2. Linux tasklet 和workqueue学习

    中断服务程序一般都是在中断请求关闭的条件下执行的,以避免嵌套而使中断控制复杂化.但是,中断是一个随机事件,它随时会到来,如果关中断的时间太长,CPU就不能及时响应其他的中断请求,从而造成中断的丢失.因 ...

  3. TD tree体验

    在体验了学长们设计的app后,我颇有感触,我们也可以凭借自己的力量来开发一款软件,虽然它可能并不如市面上相同类型的那么完美,但它对我们的意义却是不一样的. 我是在下午的见面会上看到的这款软件,接待的学 ...

  4. Bug搬运工-CSCvn51483:AP datasheet should contain info if the AP contains or not temperature sensor

    目前在老一些的思科AP上,应该都没有温度传感器的功能(例如AP1600,wave 1 AP1700...),但是在思科官方没有明确的文档去说明这个问题. 在Outdoor AP(室外AP,例如AP15 ...

  5. 【译】高级T-SQL进阶系列 (七)【上篇】:使用排序函数对数据进行排序

    [译注:此文为翻译,由于本人水平所限,疏漏在所难免,欢迎探讨指正] 原文链接:传送门. 什么是排序函数(Ranking Functions)? 排序函数基于一组记录的集合返回一个排序值.一个排序值其实 ...

  6. MySQL基本查询

    1.查询某数据库中表的总数 select count(*) from information_schema.tables where table_schema='dbname'; 2.仅占一列显示某数 ...

  7. Redis的安装和启动(一)

    一.Redis的安装 获取redis的安装包 ①如果能上网,选择以下命令:wget http://download.redis.io/releases/redis-3.2.11.tar.gz ②如果不 ...

  8. C语言:计算并输出给定10个数的方差。

    //计算并输出给定10个数的方差. #include<math.h> #include<stdio.h> ]) { double p = 0.0,f=0.0,g=0.0; ; ...

  9. workspace 打开的是我的电脑

    在system tree板块的空白处右键-->set root-->current workspace 即可恢复workspace.

  10. python3中的raise使用

    raise表示会抛出异常那么就是说raise会向python的解释器一个响应告诉解释器他的后面是一个异常让我们的程序中断 一般是和自定义的异常连用. class CustomError(Excepti ...