【python实现卷积神经网络】全连接层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch
卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html
激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html
损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html
优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html
卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html
全连接层实现代码:
class Dense(Layer):
"""A fully-connected NN layer.
Parameters:
-----------
n_units: int
The number of neurons in the layer.
input_shape: tuple
The expected input shape of the layer. For dense layers a single digit specifying
the number of features of the input. Must be specified if it is the first layer in
the network.
"""
def __init__(self, n_units, input_shape=None):
self.layer_input = None
self.input_shape = input_shape
self.n_units = n_units
self.trainable = True
self.W = None
self.w0 = None def initialize(self, optimizer):
# Initialize the weights
limit = 1 / math.sqrt(self.input_shape[0])
self.W = np.random.uniform(-limit, limit, (self.input_shape[0], self.n_units))
self.w0 = np.zeros((1, self.n_units))
# Weight optimizers
self.W_opt = copy.copy(optimizer)
self.w0_opt = copy.copy(optimizer) def parameters(self):
return np.prod(self.W.shape) + np.prod(self.w0.shape) def forward_pass(self, X, training=True):
self.layer_input = X
return X.dot(self.W) + self.w0 def backward_pass(self, accum_grad):
# Save weights used during forwards pass
W = self.W if self.trainable:
# Calculate gradient w.r.t layer weights
grad_w = self.layer_input.T.dot(accum_grad)
grad_w0 = np.sum(accum_grad, axis=0, keepdims=True) # Update the layer weights
self.W = self.W_opt.update(self.W, grad_w)
self.w0 = self.w0_opt.update(self.w0, grad_w0) # Return accumulated gradient for next layer
# Calculated based on the weights used during the forward pass
accum_grad = accum_grad.dot(W.T)
return accum_grad def output_shape(self):
return (self.n_units, )
【python实现卷积神经网络】全连接层实现的更多相关文章
- 【python实现卷积神经网络】padding2D层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 【python实现卷积神经网络】Flatten层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 【python实现卷积神经网络】Dropout层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 【python实现卷积神经网络】激活层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 神经网络全连接层+softmax:
如下图:(图片来自StackExchange) 强化说明全连接层: 1.通常将网络最后一个全连接层的输入,即上面的x \mathrm{x}x,视为网络从输入数据提取到的特征. 2. 强化说明softm ...
- caffe中全卷积层和全连接层训练参数如何确定
今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mni ...
- CNN学习笔记:全连接层
CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...
- Python3 卷积神经网络卷积层,池化层,全连接层前馈实现
# -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli " ...
- 【python实现卷积神经网络】卷积层Conv2D反向传播过程
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
随机推荐
- C++ 深拷贝和浅拷贝详解
前言 在对象拷贝过程中,如果没有自定义拷贝构造函数,系统会提供一个缺省的拷贝构造函数,缺省的拷贝构造函数对于基本类型的成员变量,按字节复制,对于类类型成员变量,调用其相应类型的拷贝构造函数. 位拷贝( ...
- 小白学 Python 数据分析(19):Matplotlib(四)常用图表(下)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 当程序执行一条查询语句时,MySQL内部到底发生了什么? (说一下 MySQL 执行一条查询语句的内部执行过程?
先来个最基本的总结阐述,希望各位小伙伴认真的读一下,哈哈: 1)客户端(运行程序)先通过连接器连接到MySql服务器. 2)连接器通过数据库权限身份验证后,会先查询数据库缓存是否存在(之前执行过相同条 ...
- [BJDCTF 2nd]old-hack
进入首页: 首页告诉了我们是thinkphp5的漏洞. 知道了是哪个版本的话就搜一搜喽:最后发现是thinkphp5.0.23的命令执行 payload_1:查看根目录文件,发现flag位置 http ...
- Delphi10.3的DBGrid中memo类型显示内容而不是(WIDEMEMO)
1]连接好数据库,并显示: 2]增加所有字段: 3]添加事件: // FDQuery1UserName: TWideMemoField; procedure TForm1.FDQuery1Use ...
- Java并发编程之set集合的线程安全类你知道吗
Java并发编程之-set集合的线程安全类 Java中set集合怎么保证线程安全,这种方式你知道吗? 在Java中set集合是 本篇是<凯哥(凯哥Java:kagejava)并发编程学习> ...
- 图-最短路-dijkstra-0/1BFS-1368. 使网格图至少有一条有效路径的最小代价
2020-03-01 22:59:59 问题描述: 给你一个 m x n 的网格图 grid . grid 中每个格子都有一个数字,对应着从该格子出发下一步走的方向. grid[i][j] 中的数字可 ...
- Building Applications with Force.com and VisualForce (DEV401) (三):Application Essential:Building Your Data Model
Dev 401-003:Application Essential:Building Your Data Model Object Relationships1.Link two objects- P ...
- Building Applications with Force.com and VisualForce(Dev401)(十五):Data Management: Data management Overview
Dev401-016:Data Management: Data management Overview Course Objectives1.List typical data management ...
- js的预编译
JavaScript不会完全按照代码的顺序执行,在执行之前会对定义的函数和变量先来一边所谓的预编译处理. 先来说下对变量的预处理: console.log(a) //undefined var a = ...