【python实现卷积神经网络】全连接层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch
卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html
激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html
损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html
优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html
卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html
全连接层实现代码:
class Dense(Layer):
"""A fully-connected NN layer.
Parameters:
-----------
n_units: int
The number of neurons in the layer.
input_shape: tuple
The expected input shape of the layer. For dense layers a single digit specifying
the number of features of the input. Must be specified if it is the first layer in
the network.
"""
def __init__(self, n_units, input_shape=None):
self.layer_input = None
self.input_shape = input_shape
self.n_units = n_units
self.trainable = True
self.W = None
self.w0 = None def initialize(self, optimizer):
# Initialize the weights
limit = 1 / math.sqrt(self.input_shape[0])
self.W = np.random.uniform(-limit, limit, (self.input_shape[0], self.n_units))
self.w0 = np.zeros((1, self.n_units))
# Weight optimizers
self.W_opt = copy.copy(optimizer)
self.w0_opt = copy.copy(optimizer) def parameters(self):
return np.prod(self.W.shape) + np.prod(self.w0.shape) def forward_pass(self, X, training=True):
self.layer_input = X
return X.dot(self.W) + self.w0 def backward_pass(self, accum_grad):
# Save weights used during forwards pass
W = self.W if self.trainable:
# Calculate gradient w.r.t layer weights
grad_w = self.layer_input.T.dot(accum_grad)
grad_w0 = np.sum(accum_grad, axis=0, keepdims=True) # Update the layer weights
self.W = self.W_opt.update(self.W, grad_w)
self.w0 = self.w0_opt.update(self.w0, grad_w0) # Return accumulated gradient for next layer
# Calculated based on the weights used during the forward pass
accum_grad = accum_grad.dot(W.T)
return accum_grad def output_shape(self):
return (self.n_units, )
【python实现卷积神经网络】全连接层实现的更多相关文章
- 【python实现卷积神经网络】padding2D层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 【python实现卷积神经网络】Flatten层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 【python实现卷积神经网络】Dropout层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 【python实现卷积神经网络】激活层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- 神经网络全连接层+softmax:
如下图:(图片来自StackExchange) 强化说明全连接层: 1.通常将网络最后一个全连接层的输入,即上面的x \mathrm{x}x,视为网络从输入数据提取到的特征. 2. 强化说明softm ...
- caffe中全卷积层和全连接层训练参数如何确定
今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mni ...
- CNN学习笔记:全连接层
CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...
- Python3 卷积神经网络卷积层,池化层,全连接层前馈实现
# -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli " ...
- 【python实现卷积神经网络】卷积层Conv2D反向传播过程
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
随机推荐
- Spring框架——IOC 容器的创建与使用
企业级开发框架 Spring Framework 是整个 Spring 生态的基础,各个模块都是基于 Spring Framework 衍生出来的. Spring 的两大核心机制 IOC 控制翻转.A ...
- vue one one
目录 Vue 渐进式 JavaScript 框架 一.走进Vue 1.what -- 什么是Vue 2.why -- 为什么要学习Vue 3.special -- 特点 4.how -- 如何使用Vu ...
- HTTP、TCP、IP协议面试题
HTTP.TCP.IP协议基本定义 HTTP: (HyperText Transport Protocol)是超文本传输协议的缩写,它用于传送WWW方式的数据,关于HTTP协议的详细内容请参考RFC2 ...
- 10行Python代码实现目标检测
要知道图像中的目标是什么? 或者你想数一幅图里有多少个苹果? 在本文中,我将向你展示如何使用Python在不到10行代码中创建自己的目标检测程序. 如果尚未安装python库,你需要安装以下pytho ...
- Google AI推出新的大规模目标检测挑战赛
来源 | Towards Data Science 整理 | 磐石 就在几天前,Google AI在Kaggle上推出了一项名为Open Images Challenge的大规模目标检测竞赛.当今计算 ...
- k8s 集群管理和微服务 适合做啥
k8s 集群管理和微服务 适合做啥 都知道k8s是集群 适合微服务 有很多教程 但你可以先了解他能干啥 traefix 是负载均衡工具 k8s 适合部署无状态依赖的微服务 可以按需求开启多个微服务 管 ...
- Mac word文档的消失问题以及解决方案
最近用mac电脑上的Microsoft Word写文档时,出现一个很奇怪的现象:明明我已经保存了文档到某个目录下,但是当我退出Word后,准备去保存目录找文档时发现文档消失了,前一秒还在!!! 通过各 ...
- turtle实例
1.彩虹 (1) from turtle import * def HSB2RGB(hues): hues = hues * 3.59 #100转成359范围 rgb=[0.0,0.0,0.0] i ...
- 分派pie(二分法)
2.问题描述 我的生日要到了!根据习俗,我需要将一些派分给大家.我有N个不同口味.不同大小的派.有F个朋友会来参加我的派对,每个人会拿到一块派(必须一个派的一块,不能由几个派的小块拼成:可以是一整个派 ...
- Rust入坑指南:万物初始
有没有同学记得我们一起挖了多少个坑?嗯-其实我自己也不记得了,今天我们再来挖一个特殊的坑,这个坑可以说是挖到根源了--元编程. 元编程是编程领域的一个重要概念,它允许程序将代码作为数据,在运行时对代码 ...