代码来源:https://github.com/eriklindernoren/ML-From-Scratch

卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html

激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html

损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html

优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html

卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html

全连接层实现代码:

class Dense(Layer):
"""A fully-connected NN layer.
Parameters:
-----------
n_units: int
The number of neurons in the layer.
input_shape: tuple
The expected input shape of the layer. For dense layers a single digit specifying
the number of features of the input. Must be specified if it is the first layer in
the network.
"""
def __init__(self, n_units, input_shape=None):
self.layer_input = None
self.input_shape = input_shape
self.n_units = n_units
self.trainable = True
self.W = None
self.w0 = None def initialize(self, optimizer):
# Initialize the weights
limit = 1 / math.sqrt(self.input_shape[0])
self.W = np.random.uniform(-limit, limit, (self.input_shape[0], self.n_units))
self.w0 = np.zeros((1, self.n_units))
# Weight optimizers
self.W_opt = copy.copy(optimizer)
self.w0_opt = copy.copy(optimizer) def parameters(self):
return np.prod(self.W.shape) + np.prod(self.w0.shape) def forward_pass(self, X, training=True):
self.layer_input = X
return X.dot(self.W) + self.w0 def backward_pass(self, accum_grad):
# Save weights used during forwards pass
W = self.W if self.trainable:
# Calculate gradient w.r.t layer weights
grad_w = self.layer_input.T.dot(accum_grad)
grad_w0 = np.sum(accum_grad, axis=0, keepdims=True) # Update the layer weights
self.W = self.W_opt.update(self.W, grad_w)
self.w0 = self.w0_opt.update(self.w0, grad_w0) # Return accumulated gradient for next layer
# Calculated based on the weights used during the forward pass
accum_grad = accum_grad.dot(W.T)
return accum_grad def output_shape(self):
return (self.n_units, )

【python实现卷积神经网络】全连接层实现的更多相关文章

  1. 【python实现卷积神经网络】padding2D层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  2. 【python实现卷积神经网络】Flatten层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  3. 【python实现卷积神经网络】Dropout层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. 【python实现卷积神经网络】激活层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  5. 神经网络全连接层+softmax:

    如下图:(图片来自StackExchange) 强化说明全连接层: 1.通常将网络最后一个全连接层的输入,即上面的x \mathrm{x}x,视为网络从输入数据提取到的特征. 2. 强化说明softm ...

  6. caffe中全卷积层和全连接层训练参数如何确定

    今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mni ...

  7. CNN学习笔记:全连接层

    CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...

  8. Python3 卷积神经网络卷积层,池化层,全连接层前馈实现

    # -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli " ...

  9. 【python实现卷积神经网络】卷积层Conv2D反向传播过程

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

随机推荐

  1. Spring框架——IOC 容器的创建与使用

    企业级开发框架 Spring Framework 是整个 Spring 生态的基础,各个模块都是基于 Spring Framework 衍生出来的. Spring 的两大核心机制 IOC 控制翻转.A ...

  2. vue one one

    目录 Vue 渐进式 JavaScript 框架 一.走进Vue 1.what -- 什么是Vue 2.why -- 为什么要学习Vue 3.special -- 特点 4.how -- 如何使用Vu ...

  3. HTTP、TCP、IP协议面试题

    HTTP.TCP.IP协议基本定义 HTTP: (HyperText Transport Protocol)是超文本传输协议的缩写,它用于传送WWW方式的数据,关于HTTP协议的详细内容请参考RFC2 ...

  4. 10行Python代码实现目标检测

    要知道图像中的目标是什么? 或者你想数一幅图里有多少个苹果? 在本文中,我将向你展示如何使用Python在不到10行代码中创建自己的目标检测程序. 如果尚未安装python库,你需要安装以下pytho ...

  5. Google AI推出新的大规模目标检测挑战赛

    来源 | Towards Data Science 整理 | 磐石 就在几天前,Google AI在Kaggle上推出了一项名为Open Images Challenge的大规模目标检测竞赛.当今计算 ...

  6. k8s 集群管理和微服务 适合做啥

    k8s 集群管理和微服务 适合做啥 都知道k8s是集群 适合微服务 有很多教程 但你可以先了解他能干啥 traefix 是负载均衡工具 k8s 适合部署无状态依赖的微服务 可以按需求开启多个微服务 管 ...

  7. Mac word文档的消失问题以及解决方案

    最近用mac电脑上的Microsoft Word写文档时,出现一个很奇怪的现象:明明我已经保存了文档到某个目录下,但是当我退出Word后,准备去保存目录找文档时发现文档消失了,前一秒还在!!! 通过各 ...

  8. turtle实例

    1.彩虹 (1) from turtle import * def HSB2RGB(hues): hues = hues * 3.59 #100转成359范围 rgb=[0.0,0.0,0.0] i ...

  9. 分派pie(二分法)

    2.问题描述 我的生日要到了!根据习俗,我需要将一些派分给大家.我有N个不同口味.不同大小的派.有F个朋友会来参加我的派对,每个人会拿到一块派(必须一个派的一块,不能由几个派的小块拼成:可以是一整个派 ...

  10. Rust入坑指南:万物初始

    有没有同学记得我们一起挖了多少个坑?嗯-其实我自己也不记得了,今天我们再来挖一个特殊的坑,这个坑可以说是挖到根源了--元编程. 元编程是编程领域的一个重要概念,它允许程序将代码作为数据,在运行时对代码 ...