样本(\(x_{i}\),\(y_{i}\))个数为\(m\):

\[\{x_{1},x_{2},x_{3}...x_{m}\}
\]

\[\{y_{1},y_{2},y_{3}...y_{m}\}
\]

其中\(x_{i}\)为\(n\)维向量:

\[x_{i}=\{x_{i1},x_{i2},x_{i3}...x_{in}\}
\]

其中\(y_i\)为类别标签:

\[y_{i}\in\{-1,1\}
\]

其中\(w\)为\(n\)维向量:

\[w=\{w_{1},w_{2},w_{3}...w_{n}\}
\]

函数间隔\(r_{fi}\):

\[r_{fi}=y_i(wx_i+b)
\]

几何间隔\(r_{di}\):

\[r_{di}=\frac{r_{fi}}{\left \| w \right \|}
=\frac{y_i(wx_i+b)}{\left \| w \right \|}
\]

最小函数间隔\(r_{fmin}\):

\[r_{fmin}=\underset{i}{min}\{y_i(wx_i+b)\}
\]

最小几何间隔\(r_{dmin}\):

\[r_{dmin}=\frac{r_{fmin}}{\left \| w \right \|}
=\frac{1}{\left \| w \right \|}*\underset{i}{min}\{y_i(wx_i+b)\}
\]

目标是最大化最小几何间隔\(r_{dmin}\):

\[max\{r_{dmin}\}=
\underset{w,b}{max}\{\frac{1}{\left \| w \right \|}*\underset{i}{min}\{y_i(wx_i+b)\}\}
\]

最小几何间隔的特点:等比例的缩放\(w,b\),最小几何间隔\(r_{dmin}\)的值不变。

因此可以通过等比例的缩放\(w,b\),使得最小函数间隔\(r_{fmin}\)=1,即:

\[\underset{i}{min}\{y_i(wx_i+b)\}=1
\]

此时会产生一个约束条件:

\[y_i(wx_i+b)\geq 1
\]

最终优化目标为:

\[\left\{\begin{matrix}
\underset{w,b}{max}\frac{1}{\left \| w \right \|}
\\
y_i(wx_i+b)\geq 1
\end{matrix}\right.
=
\left\{\begin{matrix}
\underset{w,b}{min}\frac{1}{2}{\left \| w \right \|}^2
\\
y_i(wx_i+b)\geq 1
\end{matrix}\right.
\]

支持向量机SVM推导的更多相关文章

  1. [转] 从零推导支持向量机 (SVM)

    原文连接 - https://zhuanlan.zhihu.com/p/31652569 摘要 支持向量机 (SVM) 是一个非常经典且高效的分类模型.但是,支持向量机中涉及许多复杂的数学推导,并需要 ...

  2. 以图像分割为例浅谈支持向量机(SVM)

    1. 什么是支持向量机?   在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点 ...

  3. 机器学习之支持向量机—SVM原理代码实现

    支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决 ...

  4. 一步步教你轻松学支持向量机SVM算法之案例篇2

    一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...

  5. OpenCV 学习笔记 07 支持向量机SVM(flag)

    1 SVM 基本概念 本章节主要从文字层面来概括性理解 SVM. 支持向量机(support vector machine,简SVM)是二类分类模型. 在机器学习中,它在分类与回归分析中分析数据的监督 ...

  6. 转:机器学习中的算法(2)-支持向量机(SVM)基础

    机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版 ...

  7. 【Supervised Learning】支持向量机SVM (to explain Support Vector Machines (SVM) like I am a 5 year old )

    Support Vector Machines 引言 内核方法是模式分析中非常有用的算法,其中最著名的一个是支持向量机SVM 工程师在于合理使用你所拥有的toolkit 相关代码 sklearn-SV ...

  8. OpenCV支持向量机SVM对线性不可分数据的处理

    支持向量机对线性不可分数据的处理 目标 本文档尝试解答如下问题: 在训练数据线性不可分时,如何定义此情形下支持向量机的最优化问题. 如何设置 CvSVMParams 中的参数来解决此类问题. 动机 为 ...

  9. 【机器学习】支持向量机SVM

    关于支持向量机SVM,这里也只是简单地作个要点梳理,尤其是要注意的是SVM的SMO优化算法.核函数的选择以及参数调整.在此不作过多阐述,单从应用层面来讲,重点在于如何使用libsvm,但对其原理算法要 ...

随机推荐

  1. 114 Flatten Binary Tree to Linked List [Python]

    114 Flatten Binary Tree to Linked List Given a binary tree, flatten it to a linked list in-place. 将二 ...

  2. AAAI 2020 | DIoU和CIoU:IoU在目标检测中的正确打开方式

    论文提出了IoU-based的DIoU loss和CIoU loss,以及建议使用DIoU-NMS替换经典的NMS方法,充分地利用IoU的特性进行优化.并且方法能够简单地迁移到现有的算法中带来性能的提 ...

  3. [STL] Codeforces 69E Subsegments

    Subsegments time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...

  4. WordPress 版本升级、主题升级记录

    版本升级 升级很简单,但是以防万一,先备份数据. 一.备份数据库 mysqldump -u root -p --database myblog > myblog.sql 若需要还原可执行如下操作 ...

  5. 走近源码:Redis如何清除过期key

    "叮--",美好的周六就这么被一阵钉钉消息吵醒了. 业务组的同学告诉我说很多用户的帐号今天被强制下线.我们的帐号系统正常的逻辑是用户登录一次后,token的有效期可以维持一天的时间 ...

  6. CodeForces - 1249E 楼梯和电梯

    题意:第一行输入n和c,表示有n层楼,电梯来到需要时间c 输入两行数,每行n-1个,表示从一楼到二楼,二楼到三楼.....n-1楼到n楼,a[ ] 走楼梯和 b[ ] 乘电梯花费的时间 思路:动态规划 ...

  7. 【转载】卸载Anaconda教程

    文章来源:https://docs.continuum.io/anaconda/install/uninstall/ 卸载Anaconda 要卸载Anaconda,您可以简单地删除该程序.这将留下一些 ...

  8. localStorage中一个数组嵌套一个数组的怪相

    localStorage中一个数组嵌套一个数组的怪相 需求:向本地存储中循环添加对象 思路 : ​ 先完成点击事件中添加本地存储功能,当刷新时使用一个数组记录已经存储下来的数据,并在点击事件中将新生成 ...

  9. python—os模块

     os模块(操作目录) 1 import os 2 os.rename('旧','新') #修改文件名 3 os.remove('') #删除文件 4 print(os.listdir('.')) # ...

  10. 写给小白看的入门级 Java 基本语法,强烈推荐

    之前写的一篇我去阅读量非常不错,但有一句留言深深地刺痛了我: 培训班学习半年,工作半年,我现在都看不懂你这篇文章,甚至看不下去,对于我来说有点深. 从表面上看,这句话有点讽刺我的文章写得不够通俗易懂的 ...