[noip2014]P2312 解方程
P2312 解方程
其实这道题就是求一个1元n次方程在区间[1, m]上的整数解。
我们枚举[1, m]上的所有整数,带进多项式中看看结果是不是0即可。
这里有一个技巧就是秦九韶算法,请读者自行查看学习。
时间复杂度O(n*m)。
然后你应该可以拿30分。
我们发现这些数都太大了,要开高精度。然后你愉快地拿了50分——复杂度O(n*m*length)会爆炸。
这里我们考虑hash的思想,对结果取模(最好是一个很大的质数P),如果结果是零就说明这是一个解。
应为如果结果是零,那么要么这是一个解,要么结果是p的倍数(这样的概率很小,小到不需要考虑)。
如果你运气真的不好,就多试几个不同的质数。如果这还不行,你就可以去买彩票了
#include <iostream>
using namespace std;
const long long p = 1e9 + ; long long n, m, a[], ans[], cnt; long long read() {
//读入时要取模
long long ret = , f = ;
char ch = getchar();
while (!isdigit(ch)) {
if (ch == '-') f = -;
ch = getchar();
}
while (isdigit(ch)) {
ret = (ret * + ch - '') % p;
ch = getchar();
}
return ret * f;
} int main() {
cin >> n >> m;
for (long long i = ; i <= n; i++) {
a[i] = read();//这里不能直接读入(这不是快读)
}
for (long long i = ; i <= m; i++) {
long long x = i, fx = ;
//秦九韶算法
for (long long j = n; j >= ; j--) {
fx = ((a[j] + fx) * x) % p;
}
if (fx == ) {
ans[++cnt] = x;
}
}
cout << cnt << endl;
for (long long i = ; i <= cnt; i++) {
cout << ans[i] << endl;
}
return ;
}
[noip2014]P2312 解方程的更多相关文章
- codevs3732==洛谷 解方程P2312 解方程
P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 已知多项式方程: a ...
- bzoj3751 / P2312 解方程
P2312 解方程 bzoj3751(数据加强) 暴力的一题 数据范围:$\left | a_{i} \right |<=10^{10000}$.连高精都无法解决. 然鹅面对这种题,有一种常规套 ...
- 洛谷 P2312 解方程 解题报告
P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...
- 洛谷P2312 解方程题解
洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...
- 洛谷 P2312 解方程 题解
P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...
- P2312 解方程(随机化)
P2312 解方程 随机化的通俗解释:当无法得出100%正确的答案时,考虑随机化一波,于是这份代码很大可能会对(几乎不可能出错). 比如这题:把系数都模一个大质数(也可以随机一个质数),然后O(m)跑 ...
- 【NOIP2014】解方程
题目描述 已知多项式方程 \[a_0 + a_1x + a_2x^2 + \dots +a_nx^n=0\] 求这个方程在\([1,m]\)内的整数解(\(n\)和\(m\)均为正整数). 输入输出格 ...
- [NOIP2014] 提高组 洛谷P2312 解方程
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
- 洛谷P2312 解方程 [noip2014] 数论
正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...
随机推荐
- spark wordcount程序
spark wordcount程序 IllegalAccessError错误 这个错误是权限错误,错误的引用方法,比如方法中调用private,protect方法. 当然大家知道wordcount业务 ...
- JS清除空格之trim()方法
JQ: $.trim() 函数用于去除字符串两端的空白字符. 注意:$.trim()函数会移除字符串开始和末尾处的所有换行符,空格(包括连续的空格)和制表符.如果这些空白字符在字符串中间时,它们将被保 ...
- zip 多维
ll=zip([[1,3],[2,4]],[[88,99],[66,55]])a=zip(*ll)# print(list(a)) #[([1, 3], [2, 4]), ([88, 99], [66 ...
- 【摘录自MDN】对事件冒泡和捕捉的解释
当一个事件触发了一个有父元素的元素(例如我们的<video>时),现代浏览器运行两个不同的阶段 - 捕获阶段和冒泡阶段. 在捕获阶段: 浏览器检查元素的最外层祖先(<html> ...
- 第七届蓝桥杯javaB组真题解析-方格填数(第六题)
题目 /* 方格填数 如下的10个格子 +--+--+--+ | | | | +--+--+--+--+ | | | | | +--+--+--+--+ | | | | +--+--+--+ (如果显 ...
- springMVC是如何实现参数封装和自动返回Json的
HTTP 请求和响应是基于文本的,意味着浏览器和服务器通过交换原始文本进行通信.但是,使用 Spring,controller 类中的方法返回纯 ‘String’ 类型和域模型(或其他 Java 内建 ...
- Unity热更新对比
https://www.jianshu.com/p/f9d90edf4a7c Unity 热更新为啥用Lua 详解 ILRuntime的优势 同市面上的其他热更方案相比,ILRuntime主要有以下优 ...
- Cookie信息保存到本地(MozillaCookieJar)
from urllib import request from http.cookiejar import MozillaCookieJar cookiejar = MozillaCookieJar( ...
- 九 三种Struts2访问Servlet方式总结
Servlet是单例的,Action是多例的. 多个程序访问Servlet只会创建一个Servlet对象,多个程序访问Action会创建对应的多个Action对象. 跳转页面可以获取对象的属性,说明使 ...
- SpringBoot Controller找不到视图路径
在启动类加注解@ComponentScan("com.controller")即可,括号里表示Controller所在包名. 参考:https://blog.csdn.net/ji ...