CVPR 2019 行人检测新思路:
CVPR 2019 行人检测新思路:高级语义特征检测取得精度新突破
点击我爱计算机视觉置顶或标星,更快获取CVML新技术
今天跟大家分享一篇昨天新出的CVPR 2019论文《High-level Semantic Feature Detection:A New Perspective for Pedestrian Detection》,作者将行人检测问题转化为高级语义特征检测的问题,刷新了行人检测精度的新高度!而且作者称代码将开源。
论文作者信息:
作者分别来自国防科技大学、中科院自动化所、阿联酋起源人工智能研究院和地平线机器人公司。
算法思想
特征检测是计算机视觉中常用算法,比如我们所熟知的边缘检测、Blob检测,简单点说就是检测图像中的感兴趣部分。在传统的计算机视觉视觉中,这往往被认为是low-level的操作。
随着深度学习技术的发展,一般认为深度学习提取的特征具有高级语义特性。
作者认为行人检测中行人的中心点(x,y坐标)和尺度(宽高)是一种高级语义特征,行人检测完全可以转化为这些语义特征的检测。
如下图所示:
输入图像经过卷积网络,然后分成Center Heatmap计算和Scale Map 计算,得到的中心点坐标和宽高大小,即检测出了行人。
看起来很简单,但却是很有效!
下图是更详细的网络架构图:
该算法最主要的两部分为特征提取模块和Detection Head模块。
特征提取模块对4个Stage的特征图进行了串联,以增强特征的多尺度表达能力。
Detection Head模块,由256个3*3卷积和分支开来的两个1*1卷积组成,然后分别成为最终的Center heatmap 和Scale Map。
将现有标注好的行人检测数据集转化为中心点和尺度标注的方法是显而易见的,如下图(图中作者使用log(高度)作为行人尺度):
在Point Prediction 这一端,作者实际上尝试了中心点、顶部顶点、底部顶点等三种方式,实验结果如下图上半部分,发现使用中心点效果最好,而且是远好于另外两者。
同样在Scale Prediction这一端,作者尝试了预测高度、宽度和二者都预测。发现只预测高度的效果最好(此时设置固定宽高比0.41)。
实验结果
下面三张图是在Caltech数据集上的实验结果,该文提出的算法CSP均取得了最高的精度。
下图为在CityPersons数据集上的实验结果,CSP同样取得了最好的结果。
另外,值得一提的是,该算法不仅仅适用于行人检测!在作者的Github工程主页上放出了使用该文算法在人脸检测数据集WiderFace上的实验结果,在验证集和测试集上均取得了最高精度或者媲美最高精度的结果。
如下图所示:(请点击大图查看)
读完此文,CV君在想,人脸和行人的宽高比相对变化较小,该文提出的算法取得了很不错的结果。那么对于通用目标检测,宽高比变化比较大,该算法结果会如何呢?希望有进一步实验结果出来。
希望该文对你有帮助!
论文地址:
https://arxiv.org/abs/1904.02948v1
代码地址:
https://github.com/liuwei16/CSP
长按关注我爱计算机视觉
麻烦给我一个“在看”!
在看22
CVPR 2019 行人检测新思路:的更多相关文章
- 【论文解读】行人检测:What Can Help Pedestrian Detection?(CVPR'17)
前言 本篇文章出自CVPR2017,四名作者为Tsinghua University,Peking University, 外加两名来自Megvii(旷视科技)的大佬. 文章中对能够帮助行人检测的ex ...
- paper 87:行人检测资源(下)代码数据【转载,以后使用】
这是行人检测相关资源的第二部分:源码和数据集.考虑到实际应用的实时性要求,源码主要是C/C++的.源码和数据集的网址,经过测试都可访问,并注明了这些网址最后更新的日期,供学习和研究进行参考.(欢迎补充 ...
- paper 86:行人检测资源(上)综述文献【转载,以后使用】
行人检测具有极其广泛的应用:智能辅助驾驶,智能监控,行人分析以及智能机器人等领域.从2005年以来行人检测进入了一个快速的发展阶段,但是也存在很多问题还有待解决,主要还是在性能和速度方面还不能达到一个 ...
- 行人检测(Pedestrian Detection)资源
一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the stat ...
- PCL行人检测
首先我们知道Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很 ...
- 利用Hog特征和SVM分类器进行行人检测
在2005年CVPR上,来自法国的研究人员Navneet Dalal 和Bill Triggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测.而这两位也通过大量的测试发现,Ho ...
- 目标检测之行人检测(Pedestrian Detection)---行人检测之简介0
一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the stat ...
- CVPR 2019轨迹预测竞赛冠军方法总结
背景 CVPR 2019 是机器视觉方向最重要的学术会议,本届大会共吸引了来自全世界各地共计 5160 篇论文,共接收 1294 篇论文,投稿数量和接受数量都创下了历史新高,其中与自动驾驶相关的论文. ...
- 【计算机视觉】行人检测(Pedestrian Detection)资源
一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the stat ...
随机推荐
- SniperOj-compare_flag-Writeup
SniperOj-compare_flag-Writeup 题干如上,只给了一个nc命令,那么连接到服务器如下 有如下的python代码 #!/usr/bin/env python from time ...
- unittest 测试套件使用汇总篇
# coding=utf-8import unittestfrom inspect import isfunction def usage(): """also unit ...
- 题解 SP7579 YOKOF - Power Calculus
SP7579 YOKOF - Power Calculus 迭代加深搜索 DFS每次选定一个分支,不断深入,直至到达递归边界才回溯.这种策略带有一定的缺陷.试想以下情况:搜索树每个节点的分支数目非常多 ...
- ASP.NET CSRF 解决【网摘】
http://stackoverflow.com/questions/29939566/preventing-cross-site-request-forgery-csrf-attacks-in-as ...
- C++模板详解(三):参数化声明详解
在前两节中(C++模板详解(一).C++模板详解(二)),我们了解了函数模板和类模板的基本概念和使用方法.在这篇博文里,我们主要来详细地阐述一下"模板的参数声明"这个话题,并且也谈 ...
- 分布式系统:CAP 理论的前世今生
CAP 理论是分布式系统设计中的一个重要理论,虽然它为系统设计提供了非常有用的依据,但是也带来了很多误解.本文将从 CAP 诞生的背景说起,然后对理论进行解释,最后对 CAP 在当前背景下的一些新理解 ...
- jvm系列(一)之内存模型
JVM内存结构 Java内存模型是指Java虚拟机的内存模型,我们来看下Java内存模型的图片: VM内存模型主要分为三块:Java 堆内存(Heap).方法区(Non-Heap).JMV栈(JVM ...
- Laravel Vuejs 实战:开发知乎 (6)发布问题
1.view部分: 安装一个扩展包:Laravel-UEditor composer require "overtrue/laravel-ueditor:~1.0" 配置 添加下面 ...
- nginx 配置Tp5项目时出现 404 Not Found nginx
1.首先看了nginx报错日志 报 signal process started signal process started表示还有 产生原因 1.可能你的nginx.conf 内容配置的有问题. ...
- 计算机二级-C语言-字符数字转化为整型数字。形参与实参类型相一致。double类型的使用。
//函数fun功能:将a和b所指的两个字符串分别转化成面值相同的整数,并进行相加作为函数值返回,规定只含有9个以下数字字符. //重难点:字符数字转化为整型数字. #include <stdio ...