转自http://blog.sina.com.cn/s/blog_63e4cf2f0100tq4i.html

今天在POJ做了一道博弈题..进而了解到了阶梯博弈...下面阐述一下我对于阶梯博弈的理解..

 首先是对阶梯博弈的阐述...博弈在一列阶梯上进行...每个阶梯上放着自然数个点..两个人进行阶梯博弈...每一步则是将一个集体上的若干个点( >=1 )移到前面去..最后没有点可以移动的人输..

如这就是一个阶梯博弈的初始状态 2 1 3 2 4 ... 只能把后面的点往前面放...如何来分析这个问题呢...其实阶梯博弈经过转换可以变为Nim..把所有奇数阶梯看成N堆石子..做nim..把石子从奇数堆移动到偶数堆可以理解为拿走石子..就相当于几个奇数堆的石子在做Nim..( 如所给样例..2^3^4=5 不为零所以先手必败)为什么可以这样来转化?
   假设我们是先手...所给的阶梯石子状态的奇数堆做Nim先手能必胜...我就按照能赢的步骤将奇数堆的石子移动到偶数堆...如果对手也是移动奇数堆..我们继续移动奇数堆..如果对手将偶数堆的石子移动到了奇数堆..那么我们紧接着将对手所移动的这么多石子从那个偶数堆移动到下面的奇数堆...两次操作后...相当于偶数堆的石子向下移动了几个..而奇数堆依然是原来的样子...即为必胜的状态...就算后手一直在移动偶数堆的石子到奇数堆..我们就一直跟着他将石子继续往下移..保持奇数堆不变...如此做下去..我可以跟着后手把偶数堆的石子移动到0..然后你就不能移动这些石子了...所以整个过程..将偶数堆移动到奇数堆不会影响奇数堆做Nim博弈的过程..整个过程可以抽象为奇数堆的Nim博弈...
   其他的情况...先手必输的...类似推理...只要判断奇数堆做Nim博弈的情况即可...
   为什么是只对奇数堆做Nim就可以...而不是偶数堆呢?...因为如果是对偶数堆做Nim...对手移动奇数堆的石子到偶数堆..我们跟着移动这些石子到下一个奇数堆...那么最后是对手把这些石子移动到了0..我们不能继续跟着移动...就只能去破坏原有的Nim而导致胜负关系的不确定...所以只要对奇数堆做Nim判断即可知道胜负情况...

poj 1704 阶梯博弈的更多相关文章

  1. Georgia and Bob POJ - 1704 阶梯Nim

    $ \color{#0066ff}{ 题目描述 }$ Georgia and Bob decide to play a self-invented game. They draw a row of g ...

  2. POJ 1704 Georgia and Bob(阶梯博弈+证明)

    POJ 1704 题目链接 关于阶梯博弈有如下定理: 将所有奇数阶梯看作n堆石头,做Nim,将石头从奇数堆移动到偶数堆看作取走石头,同样地,异或值不为0(利己态)时,先手必胜. 定理证明看此博:htt ...

  3. poj 1704 Georgia and Bob(阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9363   Accepted: 3055 D ...

  4. 阶梯博弈&POJ 1704

    阶梯博弈: 先借用别人的一幅图片.(1阶梯之前还有一个0阶梯未画出) 阶梯博弈的最初定义是这样的:每一个阶梯只能向它的前一个阶梯移动本阶梯的点,直至最后无法移动的为输. 那么,利用NIM,只计算奇数级 ...

  5. poj 1704 Georgia and Bob(阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8656   Accepted: 2751 D ...

  6. POJ 1704 Georgia and Bob(阶梯博弈)题解

    题意:有一个一维棋盘,有格子标号1,2,3,......有n个棋子放在一些格子上,两人博弈,只能将棋子向左移,不能和其他棋子重叠,也不能跨越其他棋子,不能超越边界,不能走的人输 思路:可以用阶梯博弈来 ...

  7. HDU 4315 Climbing the Hill (阶梯博弈转尼姆博弈)

    Climbing the Hill Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Su ...

  8. POJ1704 Georgia and Bob 博弈论 尼姆博弈 阶梯博弈

    http://poj.org/problem?id=1704 我并不知道阶梯博弈是什么玩意儿,但是这道题的所有题解博客都写了这个标签,所以我也写了,百度了一下,大概是一种和这道题类似的能转换为尼姆博弈 ...

  9. 【POJ 1704】 Georgia and Bob

    [题目链接] http://poj.org/problem?id=1704 [算法] 阶梯博弈 [代码] #include <algorithm> #include <bitset& ...

随机推荐

  1. install Nagios on Unbuntu Unix

    Ubuntu Quickstart Up To: ContentsSee Also: Quickstart Installation Guides, Security Considerations I ...

  2. MVC项目总结(别人的好文章)

    引用 http://www.cnblogs.com/xling/archive/2012/07/11/2587002.html

  3. Repeater, DataList, 和GridView控件的区别

    http://blog.sina.com.cn/s/blog_646dc75c0100h5p6.html http://www.cnblogs.com/phone/archive/2010/09/15 ...

  4. 提供几个可注册的edu邮箱链接

    旧版的邮箱大全有edu邮箱的专题页面,放出来2个国内edu.cn邮箱的注册地址:@live.shop.edu.cn和@abc.shop.edu.cn,现在已经停止开放注册了. 其实旧版中还做了个隐藏的 ...

  5. Some projects cannot be imported because they already exist in the workspace

    原文地址: Some projects cannot be imported because they already exist in the workspace - 浅尝辄止的博客 - 博客频道 ...

  6. SGU 168

    SGU 168,寻找矩阵中右上方,右方,下方最小的元素,采用动态规划解答. #include <iostream> #include <vector> #include < ...

  7. UVa 1151 (枚举 + MST) Buy or Build

    题意: 平面上有n个点,现在要把它们全部连通起来.现在有q个套餐,如果购买了第i个套餐,则这个套餐中的点全部连通起来.也可以自己单独地建一条边,费用为两点欧几里得距离的平方.求使所有点连通的最小费用. ...

  8. vijos p1071新年趣事之打牌

    描述 过年的时候,大人们最喜欢的活动,就是打牌了.xiaomengxian不会打牌,只好坐在一边看着. 这天,正当一群人打牌打得起劲的时候,突然有人喊道:“这副牌少了几张!”众人一数,果然是少了.于是 ...

  9. geetoo编译安装

    关于Gentoo发行版的介绍请看:全球最受欢迎的十大Linux发行版(图) Host机环境:Win2008 + VMware 7.1 下载安装包 下载安装 CD 和 stage3 包: http:// ...

  10. CentOS6.5_Nginx1.40_Php5.57_MySQL5.5.35编译安装全记录

    环境说明:CentOS 6.5 32位  PHP Version 5.5.7  mysql version _5.6.16 一.准备工作 配置防火墙,允许防火墙通过22(sshd).80(WEB).3 ...